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CHAPTER 5

The sea ice–ocean boundary layer
Miles G. McPhee
McPhee Research Company, Naches, WA, USA

5.1 Introduction

Sea ice exerts profound influence on air–sea interaction
by effectively insulating the upper ocean from the
cold polar atmosphere, thus reducing both outgoing
long-wave radiation and sensible heat exchange, and
by drastically changing the surface albedo, inhibiting
the oceanic absorption of shortwave radiation. There
is often shear (relative motion) between the ice and
underlying ocean, either in response to wind forcing in
the extensive ice packs of polar oceans, or from tidally
induced currents or other circulation under shorefast
ice. The shear induces a boundary layer beneath the
ice in which transfers of momentum, heat and salt
are controlled by turbulent exchange processes. This
ice–ocean boundary layer (IOBL) shares many char-
acteristics with open ocean boundary layers, except
that the upper boundary conditions are imposed by a
solid–liquid interface instead of a gas–liquid interface,
and as a consequence surface gravity waves play a
minor role in IOBL dynamics, except in marginal ice
zones or with low ice concentrations.

In the open ocean, vertical displacements and orbital
velocities from surface waves present a formidable
obstacle to direct measurement of turbulent fluxes. In
contrast, drifting pack ice presents a stable measurement
platform, often moving with the maximum velocity in
the water column, from which it is relatively easy to
deploy clusters of instruments through the entire extent
of a rotating planetary boundary layer. Since the 1970s,
the ‘laboratory’ aspects of drifting sea ice have been
exploited to measure the small deviatory changes in
velocity and scalar properties necessary for covariance
estimates of turbulent (Reynolds) fluxes. Coupled with
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modern techniques for measuring profiles of temper-
ature, salinity and velocity (by acoustic profiler) on a
more or less continuous basis for weeks or months at
a time, this has provided us an unprecedented view of
how the IOBL works, and much insight into planetary
boundary layers in general.

Ice-covered polar oceans are cold, often quite
near their salinity-determined freezing temperatures,
with small temperature contrast between the upper
ocean and the base of the ice cover. Compared with
instantaneous radiative and even turbulent convective
exchanges at the upper surface of the ice, instanta-
neous ocean (basal) heat flux magnitudes are generally
modest, yet Maykut and Untersteiner (1971) found in
their thermodynamic sea ice model that about 2W m–2

heat flux from the ocean was required to maintain
a steady-state ice thickness. Nevertheless, during the
initial planning stages for the year-long Surface Heat
Budget of the Arctic (SHEBA) project, some partici-
pants questioned the necessity of measuring ice–ocean
exchanges at all. As it turned out, our measurements
over the SHEBA year demonstrated much variability in
basal heat flux, with the annual average of about 7.2W
m–2 (McPhee, 2008b; Shaw et al., 2009), coinciding
closely with the heat absorbed by a net ice loss of about
75 cm at the SHEBA station reported by Perovich et al.
(2003). Clearly, it is important to understand exchanges
between the ice and ocean, particularly in a time when
the state of the ice pack appears to be rapidly changing.

There are twomain themes in this chapter. Section 5.2
investigates the structure of the IOBL, mainly from
the standpoint of scales that govern turbulent transfer
with emphasis on the drag relationship required for
estimating interface transfers of heat and salt as well
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as momentum. Section 5.3 deals with the immediate

ice–ocean interface from the perspective of the ocean. It

emphasizes the role played by salt in controlling transfer

rates through an infinitesimal control volume following

the interface, and formulates boundary conditions for

underlying turbulent boundary layer.

5.2 Turbulent exchange in the IOBL

Sea ice (as well as floating glacial ice) interacts with

the ocean through a turbulent boundary layer influ-

enced directly by rotation. During the 1893–1896 Fram

expedition, F. Nansen noted that the vessel consistently

drifted in a direction 20–40∘ clockwise from the surface

wind, which he surmised was an obvious manifestation

of the Earth’s rotation. A young Swedish researcher,

V.W. Ekman (1905), working with Nansen and V.

Bjerkness, solved the fluid equations with friction in

a rotating reference frame, in the process discovering

an elegantly simple spiral structure for velocity in the

upper ocean forced by stress at the surface. In his truly

remarkable paper, Ekman not only deduced the velocity

spiral that now bears his name, but also foretold the

presence of inertial oscillations, and laid the foundation

for understanding coastal upwelling and storm surges.

Despite ample indirect evidence for Coriolis deflection

of winds in the atmospheric boundary layer gathered

during the first half of the 20th century, the first

unequivocal example of an Ekman spiral in nature

was published by Hunkins (1966) from a composite

of current profiles measured under pack ice over a

2-month period at Arctic Drift Station Alpha during the

International Geophysical Year in 1958. Subsequently,

numerous measurements made from drifting sea ice

have demonstrated spiral-like IOBL structures, in both

velocity (e.g. McPhee & Smith, 1976) and turbulent

Reynolds stress (McPhee & Martinson, 1994). In spite

of the significant logistical barriers to operating in polar

oceans, the unique capability for measuring from a

stable platform at the surface, without the complicating

impact of surface gravity waves (with significant orbital

velocities and platform motion), has provided much

insight into how turbulent exchange in rotating bound-

ary layers occurs. In this respect, the IOBL studies carry

on a tradition founded by Nansen and Ekman.

5.2.1 Basic equations
Equations most pertinent to ice–ocean interaction
are derived from basic conservation equations for
momentum, heat and salt, and are well presented in
standard oceanographic texts (Gill, 1982; Pedlosky,
1987). Derivations specifically for the IOBL are found
in McPhee (2008b; Chapter 2). For fully developed
turbulence in natural planetary boundary layers (i.e.
in a rotating reference frame attached to Earth), the
Bousinesq form of the momentum equation (ignoring
molecular diffusion but not friction) may be written

!u
!t

+ u ⋅ ∇u + fk × u = −∇p∕" − g
"′

"
k + ∇ ⋅ τ

∼
(5.1)

where u is vector velocity of the mean flow (i.e. slowly
varying in comparison with turbulent fluctuations);
f = 2# sin $ is the Coriolis parameter ($ is latitude,
# = 7.292 × 10−5 s−1 is Earth’s angular rotation speed);
∇p is the large-scale pressure gradient; "′ is a small
density perturbation from the background density; and
g is the acceleration due to gravity. The last term in
equation (5.1) is not viscous stress divergence (which
would normally be expressed as v∇2u), but rather the
divergence of the Reynolds stress tensor, which follows
from applying the Reynolds decomposition (U = u + u′

where U is total velocity) to the advective term U ⋅ ∇U.
The components of Reynolds stress tensor are:

%ij = −⟨ui′uj′ ⟩

Summing the trace of τ
∼
, (⟨ui′ui′ ⟩ repeated indices imply

summation) yields twice the turbulent kinetic energy
per unit mass. Usually, the main interest for turbulent
exchange is the vertical derivative of a horizontal trac-
tion vector:

! = −⟨u′w′⟩ex − ⟨v′w′⟩ey
= −⟨u′w′⟩ − i⟨v′w′⟩ (5.2)

where the second representation expresses the
two-dimensional vector as a complex number with the
x-component along the real axis and the y-component
along the imaginary axis.

The pressure gradient term in equation (5.1) provides
a definition of geostrophic current

fk × vg = −g∇& (5.3)

where & is sea-surface elevation. The same pressure gra-
dient term acts on drifting sea ice, so in a state with no



!

! !

!

140 Chapter 5

other forcing (e.g. no wind stress or ice stress gradient),
the upper ocean and ice will drift with ug, and there will
be no shear to generate turbulence. It is thus often con-
venient to express the boundary layer equations in terms
of horizontal velocity relative to geostrophic flow, elim-
inating the large-scale pressure gradient term:

!u
!t

+ u ⋅ ∇u + fk × u = ∇ ⋅ τ
∼

(5.4)

Similar conservation equations may be derived for scalar
IOBL properties. For heat (temperature):

!T
!t

+ u ⋅ ∇T = QH∕("cp) (5.5)

where QH is a heat source within the IOBL (e.g. solar
heating), and cp is the specific heat of seawater. For tem-
peratures near freezing, cp is close to 4 kJ kg–1 K–1 (see
Gill, 1982, table A3.1). A similar conservation equation
for salinity is:

!S
!t

+ u ⋅ ∇S = QS∕" (5.6)

where for generality a source term for salinity is included
(a possible source might be from nucleation of frazil
crystals).

5.2.2 Impacts of rotation
If IOBL flow is steady and horizontally homogeneous,
equation (5.4) is simply:

ifu = !!
!z

(5.7)

where u = u + iv in complex notation. At some level
near the far extent of the boundary layer, turbulent
stress approaches zero, so integrating equation (5.7)
from that level to the surface:

if ∫
0

Zbl

udz = ifM = !0 (5.8)

where M is the vector volume transport in the IOBL
and !0 is kinematic stress at the boundary. Thus in a
steady state, average transport is at right angles to the
stress (clockwise in the northern hemisphere), regard-
less of the details of turbulence in the IOBL. A shallow
layer requires higher mean velocity than a deep layer
to effect the same transport, which places an important
constraint on IOBL scales.

By vector manipulation of equation (5.8) with the
addition of the continuity equation, it follows that:

∇ ⋅M = wEP ≈ 1
f
∇ × !0 (5.9)

where wEP is vertical (Ekman pumping) velocity at the
base of the mixed layer relative to the surface. Over the
past few decades, late summer (August–October) wind
stress curl over the Canada Basin (western Arctic) has
become increasingly negative, resulting in convergence
of near surface water (McPhee, 2013). Freshwater from
more intense ice melt and continental run-off is herded
by the stress curl mechanism toward the center of the
Beaufort Gyre, resulting in stronger stratification (shal-
lower mixed layers) and increased sea-surface elevation
gradients. Disappearance of perennial pack ice in the
Canada Basin (Maslanik et al., 2011; Nghiem et al.,
2007) appears to have been strongly influenced by more
intense currents in the Beaufort Gyre, which in turn
are linked directly to the stress curl via equation (5.9)
(McPhee, 2013).

Besides relating stress and volume transport,
equation (5.8) reveals little about the structure of
currents and momentum flux in the IOBL. Ekman
(1905) addressed equation (5.7) by positing that stress
and velocity were related by an ‘eddy viscosity’ that
behaved like kinematic viscosity (which depends on
the molecular velocity times mean free path) except
at much larger scales. His elegant solution revealed a
spiral in current structure, in which surface velocity
veered 45∘ to the right of surface stress, seemingly
explaining Nansen’s drift observations. It is sometimes
overlooked that Ekman considered eddy viscosity to
be constant only with respect to the vertical dimen-
sion. Based partly on the setup of coastal currents
during storms, he postulated that it should vary as
the square of wind speed (i.e. the surface stress) and
suggested quantitative values not far different from
what we have subsequently measured with modern
instrumentation.

Boundary layer currents measured under drifting
pack ice often exhibit what may be interpreted as
Ekman spirals. An example from a storm during the
Arctic Ice Dynamics Joint Experiment (AIDJEX) Pilot
Study in 1972 (Figure 5.1a) shows current vectors
at several levels drawn with respect to the current
measured at 32m, where the absolute current was
small (McPhee & Smith, 1976). The reference frame
was chosen so that the stress acting on the IOBL was
in the negative x direction. Profiles in Figure 5.1(b)
show that although the surface velocity was largely
dominated by the shear between the interface and
2m level, the integrated transport in the direction of
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Figure 5.1 (a) Plan view of currents measured for 5 hours during a storm at the 1972 Arctic Ice Dynamics Joint Experiment (AIDJEX)
Pilot Study site. All currents are shown relative to the current measured at 32m. The dashed vector is drawn where the velocity is
45∘ clockwise from the surface stress. (b) Current profiles with the x-axis aligned antiparallel to the surface stress.

stress was near zero. The dashed vector labelled ‘VE’

lies 45∘ clockwise from surface stress and falls within

the upper 2m. Turbulent stress at that level is nearly

the same as at the interface, so this can be taken as the

upper limit of the Ekman spiral. Basic aspects of Ekman

turning are nearly always present to some degree in

our measurements from drifting ice. A further example,

this one from the southern hemisphere (Figure 5.2),

was constructed from hundreds of hours of acoustic

Doppler current profiler current data obtained during

the Ice Station Polarstern (ISPOL) project in the western

Weddell Sea (McPhee, 2008a). The vectors shown were

formed by non-dimensionalizing (by complex division)

3 hour samples of currents at 2m intervals from 10 to

28m by the current measured at 30m, then averaging

all of the non-dimensional profiles.

β(10−30) = 14.6°

Data, 345.000 to 367.750

10 m

30 m

Figure 5.2 Average non-dimensional current hodograph (plan
view) of complex currentsmeasured relative to drifting ice, sam-
pled every 2m from 10 to 28m, after dividing by the current at
30m. Source: Adapted from McPhee, 2008a. Reproduced with
permission of Elsevier.

5.2.3 Inertial oscillation
Ekman (1905, with credit to Fredholm) also presented
a solution to the time-dependent problem, show-
ing circular currents oscillating with a period of a
‘half-pendulum day’ (2'∕f ) about the mean currents
of the steady solution. A much simplified illustration of
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these circular currents follows from the time-dependent
version of the horizontally homogeneous volume
transport equation:

!M
!t

+ ifM = !0 (5.10)

If the upper ocean initially at rest is subjected to an
impulsive stress in the imaginary (y) direction, i%0, at
time t = 0, the complex solution to equation (5.10) is:

M =
!0
f
(1 − e−ift)

tracing a circle in the complex plane in one inertial
period (half-pendulum day) about the steady-state
balance Mss = !0∕f . Because there is no friction in
the system, it continues to oscillate about Mss, but
never reaches the steady-state value. While this might
seem patently unrealistic, it is useful to consider some
numbers. Kinematic surface stress from a fast-moving
atmospheric system near the North Pole might have a
magnitude !0 = 2 × 10−4m2s–2 with maximum volume
transport (at t = 6, 18, 30h, etc.) of about 2.75m2

s–1. If the summer mixed layer was 25m thick, the
depth-averaged velocity would be around 11 cm s–1.

Satellite tracking of ice motion often shows ‘scallops’
in drift trajectories, indicating cycloidal motion, partic-
ularly in summer when mixed layers tend to be shal-
low and internal ice forces small. An example from an
unmanned buoy, initially deployed near the North Pole
(Figure 5.3), shows that for about four inertial periods
beginning at time 270.0 (year day 2002), the buoy tra-
jectory can be reasonably reproduced by integrating the
simple expression for velocity, comprising a mean drift
plus an inertial oscillation as listed in the figure. The
mean ice velocity is dominated by shear between the
ice cover and upper mixed layer in the direction of sur-
face stress, so the actual velocity in the mixed layer was
probably not much different from the highly idealized
example above.

Given a time series of drift positions, complex demod-
ulation provides a useful means of separating inertial (or
tidal) components of ice drift from the underlying mean
motion. The technique, described in detail by McPhee
(1988, 2008b), involves fitting the observed positions to
basis functions comprising preferred inertial and/or tidal
frequencies, for example:

X(t) = X0 + V0t + (i∕f ) [Scw(e−ift − 1) + Sccw(1 − eift)] + …

(i∕#) [Dcw(e−i#t − 1) + Dccw(1 − ei#t)] (5.11)

269.0 

269.5 

270.0 

270.5 

271.0 

271.5 

272.0 

NPEO buoy drift, 2002

V(t) = V0 + A0e−ift

V0 = –10 (1+ i ) km da−1

A0 = 10 km da−1

Figure 5.3 Track of an unmanned buoy from 26 to 29 Septem-
ber 2002. + symbols indicate satellite navigation positions every
half hour. The dashed curve is the integral of the simple velocity
expression from the initial position at time 270.0.

where # is the diurnal tidal frequency. The coefficients
are determined by least-squares error minimization
from position fixes over a time comparable to the
longest period. An example, calculated by differen-
tiating equation (5.11) evaluated from SHEBA GPS
positions every 3h, is shown in Figure 5.4. Note that
V0 is an estimate of the ‘mean’ velocity with inertial
and tidal components removed. As the upper ocean
typically oscillates in phase with the ice, V0 is often
a better indicator of shear, hence turbulence, in the
upper part of the boundary layer than is the total ice
velocity. With frequent, accurate navigation fixes, other
methods provide good velocity estimates, but the main
advantage of complex demodulation is that it recognizes
the inherent inertia of the rotating ice/IOBL system,
and provides a means of rationally separating inertial
and tidal motions from the velocity due to shear in
the IOBL.

5.2.4 Turbulence scales and eddy viscosity
The simplest approach to describing and modelling tur-
bulent transport perpendicular to mean flow in bound-
ary layer shear flows is by relating flux of a quantity
directly to its mean gradient using a proportionality fac-
tor with units length squared over time, suggesting that
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Figure 5.4 Surface Heat Budget of the Arctic (SHEBA) project station drift speed in September 1998. The dashed curve is the ‘mean’
velocity after removal of inertial and diurnal tidal components via complex demodulation.

the factor (eddy viscosity if the property is momentum
flux, and eddy diffusivity for scalar fluxes) is the prod-
uct of turbulent velocity and length scales, e.g. kinematic
stress:

⟨w′u′⟩ = −Kuz = −u%(uz (5.12)

where uz = !u∕!z is shear, u% is a turbulent velocity
scale, and ( is a length scale expressing the vertical
displacement over which the turbulent eddies are
effective at exchanging momentum (not necessarily
the actual vertical excursion of fluid in the eddies). A
major thrust of IOBL turbulence measurements over
the past three decades has been aimed at elucidating
what controls these scales.

5.2.5 Neutral stratification
The IOBL that forms when there is shear between the
ice and underlying ocean is often relatively unaffected
by changes in density, when melting or freezing is slow,
and when the upper ocean is well mixed in both tem-
perature and salinity to reasonably large depths. These
so-called neutral boundary layers (meaning that gravita-
tional forces are negligible comparedwith friction arising
from inertial forces in the fluid) provide a good starting
point for considering the general problem of ice–ocean
exchange.

It is well established that in the lower tens of metres
of the neutral boundary layer of the atmosphere, (i) tur-
bulent stress is relatively constant, equal to boundary
stress; (ii) stress and velocity are nearly aligned; and (iii)
the velocity profile follows the ‘law of the wall’:

u(z) =
u∗0
)

log
z
z0

(5.13)

where u∗0 is friction velocity, a vector defined in terms
of the vector kinematic boundary stress, u∗0u∗0 = !0; z0 is
the hydraulic roughness of the boundary, typically about
1/30th the size of roughness elements on the surface;
and ) is von Kàrmàn’s constant,∼0.4. An obvious choice
of turbulent velocity scale is u∗0 , so applying these stip-
ulations to equation (5.12) with uz = u∗0∕()z), it follows
from equation (5.13) that ( = )z in the region of the
flow where (i)–(iii) hold, by convention called the sur-
face layer. In terms of dimensional analysis, this implies
that shear is a function of only two independent vari-
ables, u∗0 and z, with independent dimensions, hence by
the Pi theorem (e.g. Barenblatt, 1996), a dimensionless
group formed from uz , z, and u∗0 is a constant (equal
to 1∕k), and:

$m =
)zuz
u∗0

= 1 (5.14)

In atmospheric terminology, $m is the dimensionless
wind shear in the surface layer.

The surface layer approximation assumes rotation
(Coriolis force) is unimportant in formulating the
relation between shear and stress. However, from the
perspective of the Ekman approach, i.e. that eddy
viscosity is invariant with depth, the outer part of
the boundary layer behaves quite differently from the
surface layer, a view corroborated by measurements like
those shown in Figures 5.1 and 5.2 where rotational
effects are obvious. If we assume that away from the
surface layer, shear depends on f as well as u∗0 and z,
then dimensional analysis leads to

zuz
u∗0

= Φ
(

fz
u∗0

)
= Φ(*) (5.15)
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introducing the planetary scale, u∗0∕f . For the IOBL,
with moderate stress (u∗0 = 0.01 m s–1 ), the planetary
scale is ∼70m at high latitudes. When sea ice moves in
a state of free drift (internal stress gradients negligible in
the force balance), IOBL boundary stress is usually com-
parable towind stress. The ratio of friction velocities then
equals the inverse square root of the density ratio, and
hence the planetary scale in the atmosphere is roughly
30 times that of the IOBL. This large disparity between
the respective boundary-layer scales demonstrates why
IOBL measurements are almost always made either
beyond the surface layer or at its outer fringes (i.e. IOBL
measurements at 2m would correspond to atmospheric
measurements atop a 60m tower).

A simple way of reconciling the surface and outer
layers is to assume that when * = z∕(u∗0∕f ) is small (i.e.
in the surface layer), ( is governed by the geometric
scale, kz, but that in the outer layer, eddies no longer
sense their distance from the boundary, and ( is gov-
erned instead by some small fraction of the planetary
scale, Λ∗u∗0∕f . An extensive series of measurements in
the neutrally stratified IOBL has reinforced this theme
(McPhee, 1994, 2008b; McPhee & Smith, 1976; McPhee
& Martinson, 1994). An approximate value emerging
from these studies for the similarity parameter Λ∗ is
0.028, which for a typical planetary scale implies that
mixing length in the outer layer is about 2 m.

A practical result from comparisons between directly
measured stress in the IOBL and variance (energy)
wavenumber spectra of the vertical velocity component
has been the emergence of a close inverse relationship
between ( and wavenumber, kmax, at the peak in the
area-preserving w spectrum (McPhee & Smith, 1976;
McPhee & Martinson, 1994): ( = c(∕kmax , with c( ≈ 0.85.
With this relationship, it is then possible to estimate the
local eddy viscosity:

Klocal = c(u∗∕kmax

where u∗ is obtained either from direct covariance
estimates of Reynolds stress or from the w spectrum
itself (e.g.McPhee, 2004). With the latter, measuring
just vertical velocity spectra at particular levels provides
estimates of eddy viscosity. McPhee and Martinson
(1994) showed that discrete-level estimates made by
this method agreed reasonably well with a bulk estimate
of eddy viscosity from an exponential fit of measured
Reynolds stress, and with an estimate of thermal eddy

diffusivity obtained by dividing average upward heat
flux by the negative temperature gradient.

Another application of using the ‘measured’ mixing
length to infer important characteristics of IOBL scales
comes from the ISPOL experiment in the western
Weddell Sea in 2004–2005 (McPhee, 2008a). Tur-
bulence was measured at several levels, providing
covariance estimates of u∗(cov) = |⟨u′w′⟩ + i⟨v′w′⟩|1∕2
and ( = 0.85∕kmax from averaged w spectra versus
u∗(cov) (Figure 5.5); we can gauge to what degree the
turbulence scales are controlled dynamically by the
planetary (Λ∗u∗0∕f ) scaling as opposed to the geometric
limit of distance from the boundary. Despite typically
large scatter in the turbulence data, a least-squares fit
through the origin indicates that ( is often controlled by
rotation, and is on average relatively predictable.

If ( scales with u∗0∕f through most of the IOBL
beyond a thin surface layer, the average eddy viscosity is
K = u∗(max ≈ Λ∗u

2
∗0∕(

√
2f ), as stress varies roughly lin-

early from its surface value to zero near the base of the
IOBL. Thus the non-dimensional mean eddy viscosity is:

K∗ = f K∕u∗0
2 ≈ 0.02

consistent with various estimates from IOBL data (e.g.
McPhee & Martinson, 1994). Note that it is also consis-
tent with Ekman’s (1905) assertion that eddy viscosity
in the ocean varied with the square of the wind speed.
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Figure 5.5 Mixing length as inferred from kmax (from verti-
cal velocity spectra) versus u∗ from 3 hour average turbulence
statistics and spectra. The dot-dashed line is a least-squares
regression through the origin with 95% confidence interval
indicated by light dashed lines. The heavy dashed line indicates
the dynamic (planetary) maximummixing length. Grey dashed
horizontals indicate geometric (kz) limits at 2 and 4m.
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5.2.6 Buoyancy impact on turbulence
scales
Ice melting or freezing modifies IOBL turbulence in
much the same way that nocturnal surface cooling or
diurnal heating either quells or enhances turbulence in
the atmospheric boundary layer. When ice is melting,
turbulent eddies must work against gravity to transport
momentum and scalar properties downward, and con-
sequently, for the same stress, the turbulence scales are
suppressed and exchange is limited to depths smaller
than would be expected under neutral conditions. By
the same token, freezing enhances turbulence scales
by converting potential energy of the water column to
turbulent energy. These tendencies are quantified by
considering a third length scale, introduced by Obukhov
(1971, English translation):

L0 =
u∗0

3

)⟨w′b′⟩0
(5.16)

L0 is positive when ice is melting, as salinity
flux is upward, and negative for freezing. Atmo-
spheric boundary-layer studies have established that
non-dimensional shear and analogous scalar gradi-
ents across the surface layer follow Monin–Obukhov
similarity, i.e.:

zuz
u∗0

= $m(+); + = z∕L0 [surface layer] (5.17)

In the surface layer, (sl = )z∕$m. The form of the simi-
larity parameter $m has been extensively studied for the
atmospheric surface layer, resulting in a variety of empir-
ical functions (Businger et al., 1971; Lettau, 1979). The
impact of small positive + (stabilizing) is to decrease (sl
and increase shear, while the opposite holds for + small
and negative (destabilizing).

By comparison with the atmospheric surface layer,
there is a paucity of data on the impact of boundary
buoyancy flux on the IOBL. However, measurements
of turbulence during rapid melting (McPhee et al.,
1987; Sirevaag, 2009) and at the edges of freezing leads
(McPhee, 1994; McPhee & Stanton, 1996) have pro-
vided an important insight into how buoyancy affects
turbulence, including in the region beyond the surface
layer. For the IOBL stably stratified by surface buoyancy
flux (melting), a similarity theory incorporating the
three scales discussed so far adequately describes how
positive buoyancy flux influences IOBL scales (McPhee,

1981, 1994, 2008b). In that approach the scales for the
outer layer are:

Length ∶ &∗u∗0∕f
Velocity ∶ u∗0∕&∗
Eddy viscosity ∶ (u∗0&∗)

2∕f
Kinematic stress ∶ u∗0u∗0

&∗ =
(
1 +

Λ∗,∗
)Rc

)−1∕2
(5.18)

where ,∗ = u∗0∕(f L0) is the ratio of the planetary
scale to the Obukhov length, Rc is the critical flux
Richardson number (∼0.2), and u∗0 is vector (complex)
friction velocity. The stability parameter &∗ represents
a harmonic mean for the maximum mixing length
in the outer layer that asymptotically approaches the
following limits:

(max → Λ∗u∗0∕f for L → ∞

(max → Rc)L for L → 0+ (5.19)

so that:
(max = &∗

2Λ∗u∗0∕f (5.20)

Stabilizing buoyancy flux (&∗ < 1), is a sink for turbu-
lent kinetic energy, and thus shear is required for turbu-
lence. However, destabilizing buoyancy flux (e.g. from
rapid freezing) is a turbulent kinetic energy source, and
it is possible to have significant turbulence with little
or no ice–ocean shear. In that case, dimensional anal-
ysis suggests that the scale velocity in pure free convec-
tion ought to be proportional to the cube root of a scale
velocity multiplied by the buoyancy flux magnitude. A
more common condition is mixed forcing where both
density driven convection and shear contribute to tur-
bulence. Again, from dimensional analysis and consid-
ering asymptotic behaviour, a workable expression for
the scale velocity under these conditions is:

w∗ = (u∗3 − (max⟨w′b′⟩)1∕3; ⟨w′b′⟩ < 0 (5.21)

When L is negative, &∗ > 1, and according to
equation (5.20), (max increases rapidly. A practical limit
on the vertical extent of turbulent eddies is the depth
of the well-mixed layer (WML), so we posit that (max

expands until it reaches a limiting value that is some
fraction (0.2 ≤ cml ≤ 0.4) of the depth of the WML, i.e.
(max ≤ cml|zpyc|. This allows mixing length to smoothly
transition between neutral and unstable scaling.



!

! !

!

146 Chapter 5

5.2.7 Rossby similarity
A problem that often arises in considering ice–ocean
interaction is how stress at the interface is related to
ice velocity (considered with respect to undisturbed
geostrophic current). While this is often described by
a drag coefficient (e.g. !0 = cDV0

2), it is convenient
in the context of ice–ocean interaction to consider
instead a non-dimensional fluid velocity formed by
dividing complex surface velocity by vector u∗0 . The
non-dimensional velocity is in effect an inverse square
root of the drag coefficient:

U0 = V0∕u∗0 = 1∕
√
cD (5.22)

As an example, if V0 were the velocity of the ice
relative to a level, z = –2 m, within the surface layer
governed by the law of the wall (equation 5.13), the
non-dimensional velocity would be:

U0 = 1
)
log

2
z0

= 1√
ch

In this case U0 is real, as V0 and u∗0 are assumed to be
aligned (in reality, at the far extent of the surface layer,
they generally are not). A typical undersurface rough-
ness for multi-year pack ice is about 0.04m, for which
U0 = 9.8 and c2 = 0.0105.

Although it is common practice to express ocean
drag on ice as proportional to the square of velocity
relative to the current at the far extent of the IOBL
(e.g. the geostrophic current) with a constant turning
angle (Hibler, 1979), there are several drawbacks to a
quadratic drag approach, particularly in light of recent
rapid change in the character of the Arctic ice pack
(McPhee, 2012). Starting from the premise that surface
velocity depends on variables f , u∗0 , and z0, two
with independent dimensions, elementary dimensional
analysis suggests that non-dimensional surface velocity
should be a function of the ratio of the planetary scale
to surface roughness:

V0

u∗0
= U0

(u∗0
f z0

)
(5.23)

Note that equation (5.23) is a quadratic drag expression
only if its right-hand side is constant. The interplay
between hydraulic roughness and the planetary scale
is illustrated in Figure 5.6. Figure 5.6(a) shows mea-
surements from the 1972 AIDJEX IOBL currents (see
Figure 5.1). The vector labelled VE corresponds to the

δV

δV

β = 23.7°

β = 16.5°

0.1 ms−1

z0 = 36 mm

z0 = 1 mm

Vs

Vs

VE

VE

(a)

(b)

Figure 5.6 (a) Estimating undersurface hydraulic roughness
from the Arctic Ice Dynamics Joint Experiment (AIDJEX) mea-
surements (Figure 5.1), assuming the shear between the VE and
Vs follows the law of the wall. (b) For the same Ekman velocity
and planetary scale, a smoother surface results in higher surface
speed and reduced Coriolis turning.

velocity (relative to the base of the IOBL) at the upper
limit of the Ekman layer. We estimated that friction
speed during this time was u∗0 = 0.01 m s–1. The near
surface velocity field was distorted by local under-ice
morphology (McPhee & Smith, 1976), but as the ice
moved as a unit over the entire area observable from
the ice station, total shear represented integration over
a much larger area than in the immediate vicinity of
the instrument mast. If the vector velocity difference
-V = Vs − VE is the shear across the logarithmic surface
layer, the inferred larger-scale roughness is about
0.04m. In Figure 5.6(b), we consider an Ekman layer
with the same planetary scale, u∗0∕f , but much smaller
roughness length, z0 = 1 mm , typical of first-year ice in
the Weddell Sea (McPhee et al., 1999). The shear across
the surface layer is increased, and for the same stress,
ice moves about 40% faster, 7∘ closer to the surface
stress direction.

The non-dimensional ice velocity has a direct
analogue in the relationship between atmospheric
geostrophic wind (proportional to the gradient of the
surface pressure field) and wind stress at the surface.
From the same principles as discussed qualitatively
above, asymptotically matching surface and outer layers
(Rossby & Montgomery, 1935; Blackadar & Tennekes,
1968) leads to a functional form for U0 (representing
either the non-dimensional geostrophic wind or ice
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velocity relative to the undisturbed ocean). In complex
notation, Rossby similarity drag is:

U0 = 1
)
(log Ro∗ − A ∓ iB) (5.24)

where Ro∗ = u∗0∕(f z0) is the surface friction Rossby
number. The sign of the imaginary part depends on
the hemisphere (northern negative for the IOBL). The
similarity constants, A and B, may be obtained empiri-
cally from measurements or derived analytically from
similarity scaling principles (McPhee, 1990; 2008b).
Typical estimated values from IOBL studies are A = 2.3
and B = 2.1, but these are subject to a fair amount of
variability because other factors, including the impact
of boundary buoyancy flux, surface inhomogeneity or
relatively shallow mixed layers, are often present and
unaccounted for in the simple similarity approach.

The right-hand side of equation (5.24) depends
on the planetary scale, so that for a given surface
roughness, the drag coefficient varies with surface
stress. In similarity terms, the non-dimensional surface
roughness, f z0∕u∗0 , decreases with increasing stress
(i.e. the surface appears smoother), so that the drag
coefficient and turning angle also decrease (Figure 5.7).
At higher ice speeds, this can represent a significant
reduction in drag over what would be expected if the
relationship between stress and velocity were quadratic
(constant drag coefficient).

When ice melts rapidly, as it often does when blown
across temperature fronts existing in the marginal ice
zone, the surface buoyancy flux reduces turbulence
scales and, in effect, reduces the frictional coupling
between the IOBL and the underlying ocean. From
dimensional analysis, this adds a second dimensionless
parameter, the ratio of planetary to Obukhov lengths,
to equation (5.23):

U0 = U0

(u∗0
f z0

,
u∗0
f L0

)
= U0 (Ro∗, ,∗)

Consistent application of the similarity scaling
equation leads to:

U0 ≃ −i-(1 + -*sl) +
&∗
)

[
log

*sl
*0

− (a − -)*sl −
a-
2
*2sl

]

(5.25)
where " = (±i∕Λ∗), a = )(1−&∗)

&∗Λ∗
, and *sl = −Λ∗∕)

(McPhee, 1981, 2008b).Manipulation of equation (5.25)
then results in a modified Rossby similarity expression

U0 = 1
)
[log Ro∗ − A(,∗) ∓ iB(,∗)] (5.26)

Drag reduction from rapid melting may account for
the separation of distinct ice edge bands that form when
wind pushes ice across the marginal ice zone into rela-
tively warm water (McPhee, 1981, 2012; Mellor et al.,
1986). Bands separate from the pack because water in
the WML is rapidly cooled by passage of the melting ice
and hence presents less ‘grease’ for ice following the ini-
tial vanguard.

5.2.8 Discussion
The interaction of sea ice with the IOBL requires keep-
ing track of fluxes into and out of the IOBL as well as the
ice column, and for useful applications requires coupled
numerical modelling. Several approaches exist for
modelling the IOBL. ‘Slab’ models consider properties
uniform in a (literally) mixed layer, and exchanges at
its base depend on bulk properties (including velocity).
Examples for the open ocean include Pollard et al.
(1973), Niiler and Kraus (1977), Price et al. (1986) and,
for the IOBL, Toole et al. (2010). Second moment turbu-
lence closure models (Mellor & Yamada, 1982; Burchard
& Baumert, 1995) solve conservation equations on a
vertical grid, including separate conservation equations
for turbulence kinetic energy and master turbulent
length. At a higher level of complexity, large-eddy sim-
ulation (LES) models parameterize only sub-grid-scale
processes in fully three-dimensional simulations of the
equations of motion (Skyllingstad et al., 2003; Harcourt,
2005). LES models require comparatively fine grids and
are computationally expensive.

First-order closure models, which provide a compu-
tational compromise between the slab models and more
complex closure schemes, express turbulent fluxes of
momentum and scalar properties directly in terms of
the vertical property gradients. In an approach based
on IOBL measurements, called local turbulence closure
(McPhee, 2008b, chapters 6–8), eddy viscosity in the
bulk of the IOBL (where property gradients are small)
is the product of the local friction speed (square root
of the Reynolds stress) and a mixing length, which
in turn depends on surface flux conditions, f , and,
within the surface layer, distance from the boundary.
Its formulation depends on limiting asymptotic scales
identified in equation (5.19). In the fully turbulent flow
of the WML (where scalar gradients are small, but not
generally zero), we often assume scalar eddy diffusivity
is the same as eddy viscosity (Reynolds analogy). In the
pycnocline (usually defined as beginning at the depth
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Figure 5.7 Drag coefficients fromRossby similarity withA = 2.3, B = 2.1, and z0 = 0.03 m. (a) Effective drag coefficient. (b) Amplitude
of the turning angle.

where buoyancy frequency exceeds a given threshold),
the algorithm for ( is like the WML formulation, but is
based on fluxes computed at the top of the pycnocline.
When the density gradient is stabilizing, eddy diffusivity
is reduced from eddy viscosity following a formula
based on local Richardson number, derived from labo-
ratory measurements reported by Turner (1973). The
basic mixing length parameterization is illustrated if
Figure 5.8. Note the gradients in density drawn in the
WML for stable (Figure 5.8b) and statically unstable
(Figure 5.8c) cases. When we measure scalar fluxes in
the IOBL, we invariably see finite, albeit small, mean
scalar gradients.

A key element for the IOBL is z0, the hydraulic
roughness of the ice undersurface. Estimates vary
widely depending on ice age, location and the amount
of local deformation (e.g. Shirasawa, 1986, table 3;
McPhee, 1990, table 6.1). For undeformed, first-year
year ice grown in place (Svalbard fjords, Canadian
Arctic Archipelago), the undersurface is often found
to be hydraulically smooth (Langleben, 1982; McPhee

et al., 2008; Crawford et al., 1999). Surface roughness
for first-year ice in the eastern Weddell Sea was esti-
mated to be about 1mm (McPhee et al., 1999). For the
11-month SHEBA deployment (1997–1998), a local
value of z0 for undeformed, multi-year ice was found
to be 6mm (McPhee, 2002). The method specifically
excluded the effects of pressure ridge keels and refrozen
leads.

In multi-year pack ice, IOBL measurements are typ-
ically made in relatively smooth locations away from
obvious obstacles and thus may tend to systematically
underestimate the overall roughness of a large floe or
regional area representative of a model grid cell. We esti-
mated a regional value for z0 in multi-year ice in the
western Weddell Sea of about 4 cm, using a method that
comparesmodelled angular shear in the outer part of the
IOBL with observed results over relatively long averag-
ing periods (McPhee, 2008a). The method applied to the
SHEBA data set yielded a similar value, 4.9 cm (McPhee,
2008b), and a value of about 9 cm for rough ice sur-
rounding a buoy deployed near the North Pole (Shaw
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Figure 5.8 Mixing length representation under different conditions of surface buoyancy flux: (a) neutral, (b) stable, and (c) statically
unstable.

et al., 2008). The latter is comparable to estimates from

the marginal ice zone (Johannessen, 1970; Pease et al.,

1983). Lu et al. (2011) described an alternate method for

parameterizing sea ice drag by partitioning it among bot-

tom skin friction and form drag on pressure ridge keels

and floe edges.

It is useful to recall that it is log z0 that appears in the

equations, not the actual length. Even so, the range

is quite large. While the scatter in z0 estimates makes

categorization risky, in lieu of better information a

rough guide might be to assign the following values:

for undeformed fast ice, z0s = (.∕u∗0 )e
−2 (hydraulically

smooth); for first-year sea ice, ∼ 1mm; for typical

multi-year pack ice, 5 cm; for highly deformed pack ice,

∼10 cm (McPhee, 2012).

5.3 The ice–ocean interface

5.3.1 Enthalpy and salt balance at the
interface
In an idealized control volume following the interface
(Figure 5.9), three terms dominate the heat equation,
which may be written in ‘kinematic’ form (i.e. after
dividing by "cp, the product density and specific heat of
seawater) as

− q̇ + ⟨w′T ′⟩0 = w0QL (5.27)

where q̇ = −KiceTz∕("cp) represents heat conduction in
the ice column with thermal conductivity Kice and tem-
perature gradient Tz ; ⟨w′T ′⟩0 is kinematic heat flux from
the ocean;QL = Lice∕cp is the latent heat of sea ice divided
by specific heat (with temperature units); and w0 is ver-
tical velocity of the interface due to melting or freezing
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w = w0 + wp
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Advection out of control volume

dz
dT

Ice

water

Thermal Balance at the Ice/Ocean Interface
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Figure 5.9 Simplified schematic of the heat balance at the ice–ocean interface, with control volume following the boundary.

(i.e. the isostatically balanced basal melt rate). Advec-
tive flux associated with w0 is neglected, assuming that
temperatures of fluid entering and leaving the control
volume are nearly the same. Thermal properties of sea
ice are functions of brine volume and temperature (Notz
&Worster, 2009). Here we use simplified expressions for
thermal conductivity from Untersteiner (1961):

Kice ≈ Kfresh + 0Sice∕Tice

where Kfresh is 2.04 J m–1 K–1 s–1 and 0 = 0.117
J K–1 s–1 psu–1 ∘C, and for latent heat from Maykut
(1985):

QL =
Lfresh
cp

(1 − 0.03Sice)

When sea icemelts, the interface is typically very smooth
and hard, and turbulent flux of salt (⟨w′S′⟩0) into the
control volume is balanced mainly by an advective flux
given by w times the difference between the salinity of
water at the interface and ice salinity:

⟨w′S′⟩0 + w(Sice − S0) = 0 (5.28)

For generality, the vertical interface velocity,
w = w0 + wp, includes a second term, wp, intended
to incorporate the idea that a percolation flow of fresh
or brackish water driven by a pressure head in the ice
column could induce upward interface motion (and
negative salinity flux) without direct melting. In most
applications and it what follows, wp is ignored.

When ice freezes, there is substantial evidence that

the simple balance expressed by equation (5.28) does

not adequately account for the salt transfer in an

infinitesimal control volume following the interface.

The leading edge of growing sea ice appears to be a

combination of crystalline ice and entrapped liquid

brine in a so-called mushy layer (Wettlaufer et al.,

1997; Feltham et al., 2006), and that near the growing

interface, Sice approaches the salinity of the melt (Notz

& Worster, 2009); hence the advective flux is small.

What this implies for the IOBL boundary condition is

discussed below.

5.3.2 Measurements
Instrument clusters, including highly accurate ocean

thermometers mounted near three-dimensional arrays

of current meters, were deployed in the IOBL during

the Marginal Ice Zone Experiment (MIZEX) in 1984, so

that in addition to turbulent stress, accurate estimates

of turbulent heat flux were available for the first

time (McPhee et al., 1987). Near the end of MIZEX,

northerly winds pushed our floe south into water where

the mixed layer temperature was well above freezing.

Measured heat flux and basal melt rate increased

substantially, but were still considerably smaller than

we had anticipated from previous modelling studies,

and when the floe on which we were drifting did not

melt away, it was clear that we had to re-examine our

treatment.
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Figure 5.10 Directly measured heat flux averaged in bins of ΔT and u∗ for all data from Marginal Ice Zone Experiment (MIZEX) in
1984. Source: Adapted from McPhee, 1992. Reproduced with permission of American Geophysical Union.

Results from the combination of heat flux and
Reynolds stress measurements during MIZEX are
summarized in Figure 5.10 (McPhee, 1992), intended
to illustrate that ocean heat flux depends on both
temperature elevation from freezing and friction speed,
u∗. MIZEX and subsequent studies suggested a simple
empirical parameterization of kinematic heat flux of the
form:

Hf

"cp
= ⟨w′T ′⟩0 = St∗u∗0ΔT (5.29)

where ΔT = Tml − Tf (Sml) is the elevation of mixed
layer temperature above its salinity determined freezing
temperature, and St∗ is a turbulent Stanton number.
IOBL measurements under widely varying conditions
of both u∗ and ΔT have shown St∗ to be relatively
invariant. Over the year-long SHEBA experiment its
mean value was estimated to be St∗ = 0.0057 ± 0.0004
(McPhee, 2008b).

5.3.3 Interface approximations
The first serious efforts at thermodynamic modelling
of sea ice indicated that heat flux from the ocean

was important for maintaining a realistic equilibrium
ice thickness. Maykut and Untersteiner (1971) found
that without a steady basal flux of about 2W m–2, ice
continued to grow to unrealistically large thickness in
their thermodynamic ice model. Using a similar model
for Southern Ocean sea ice, Parkinson and Washington
(1979) required a constant ocean heat flux about
an order of magnitude larger to limit ice growth to
observed thickness.

Measurements over several decades have shown that
the IOBL, even in the central Arctic with perennially
high ice concentrations, spends a sizeable fraction of
the year at temperatures above its salinity-determined
freezing temperature (Figure 5.11). Thus early in the
summer (at maximum insolation) a significant fraction
of the solar radiation making its way into the ocean is
heating the upper water column, rather than melting
ice. For example, during June 1998 at the SHEBA
station, we estimated that energy expended in heating
the mixed layer was roughly equivalent to the total
basal heat transfer. Obviously, the albedo feedback
effect (heating creates more open water, absorbing



!

! !

!

152 Chapter 5

150 200 250 300 350
0

0.1

0.2

Day of 1975

K
el

vi
n

AIDJEX Station Blue Fox, ∆T = T5 − Tf(S5)

Figure 5.11 Elevation of mixed layer temperature above freezing at the Arctic Ice Dynamics Joint Experiment (AIDJEX) station Blue
Fox during the summer of 1975 in the Canadian Basin of the western Arctic.

more solar radiation, opening more water, and so on)
is most effective at high sun angles, and the capacity of
the upper ocean to absorb heat then and release it to
the ice later provides a presumably significant brake on
the feedback process.

Critical links in understanding the balances at the
interface are the turbulent heat and salinity fluxes. A
combination of dimensional analysis and measurements
showing little or no Reynolds number dependence for
St∗ suggests that the following dimensionless expression
for the kinematic turbulent heat flux at the interface in
terms of a thermal exchange coefficient, 1h, is a function
of the Prandtl number:

⟨w′T ′⟩0
u∗0-T

= 1h

(
.
.T

)
= 1h(Pr) (5.30)

where -T = Tml − T0 is the difference in temperature
between the far-field fluid and interface (the thermal
driving); . is molecular viscosity; and .T is molecular
thermal diffusivity. Similarly, we can write a func-
tional expression for dimensionless salinity flux using
molecular haline diffusivity, .S:

⟨w′S′⟩0
u∗0-S

= 1S

(
.
.S

)
= 1S(Sc) (5.31)

where -S = Sml − S0 is the difference between far-field
and interface salinities, and Sc is the Schmidt number.

5.3.4 The ‘two-equation’ parameterization
Assuming that water at the interface is at its freezing
temperature, 1h = St∗ only if salinity there is the same as
Sml. For slowmelt rates, this is often an adequate approx-
imation, and by calculating ⟨w′T ′⟩0 from equation (5.30)

with 1h = St∗, an expression for the isostatically adjusted
melt rate is:

w0 =
−

.
q+St∗u∗0ΔT

QL
(5.32)

from which salinity flux follows:

⟨w′S′⟩0 = w0(Sml − Sice) (5.33)

These may be combined to estimate surface buoyancy
flux (an important parameter for the IOBL turbulence):

⟨w′b′⟩0 = g
"
⟨w′"′⟩0 = g(0S⟨w′S′⟩0 − 0T⟨w′T ′⟩0) (5.34)

where g is the acceleration of gravity, and 0S and 0T are
the haline contraction and thermal expansion factors
for cold seawater, respectively. For water near freezing
0T is so small that buoyancy flux is controlled almost
exclusively by salinity flux, which further simplifies
equation 5.34.

5.3.5 The ‘three-equation’
parameterization
An obvious paradox accompanies the two-equation
approach. If there is enough heat flux to initiate melting,
salinity of water in the control volume must be less than
in the far field, and -T < ΔT so 1h∕St∗ = ΔT∕-T, i.e. the
thermal exchange factor is larger than St∗ . If the Prandtl
number is important in the heat transfer process, then
it is reasonable to assume that the Schmidt number
plays a role in salt transfer. At cold temperatures, the
molecular thermal diffusivity is roughly 200 times
greater than salt diffusivity, and thus we suspect that if
heat and salt exchange depend on Pr and Sc, 1h ≠ 1S
and the process is inherently ‘double-diffusive.’
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If water in the control volume is at freezing, the
dependence of freezing temperature on salinity,
T0 = Tf (S0)

.=−mS0 (where m is the local slope of the
freezing curve), may be combinedwith equations (5.28),
(5.30) and (5.31) to obtain a quadratic in, for example,
S0:

mS20 +(TH + TL −mSice)S0 − THSice − TLSw = ! (5.35)

where

TH = Tml −
q̇

1hu∗0
; TL =

1SQL
1h

(5.36)

TH and TL are temperature-scale parameters expressing
sensible and latent heat forcing, respectively (assuming
wp is negligible as earlier). If 1h and 1S are known,w0 fol-
lows from equation (5.33), providing the melt rate and
buoyancy flux.

If heat conduction in the ice column is small, the
temperature and salinity at the interface depend on
the ratio R = 1h∕1S = (.T∕.S)n, where the exponent is
thought to range from 2/3 to 0.8 based on a combina-
tion of laminar theory and empirical results, in turn
suggesting a range 35 ≤ R ≤ 70 (Notz et al., 2003). R
is a measure of the strength of double diffusion, i.e.
as R increases, heat transfer increases relative to salt
transfer. For fresh ice with no temperature gradient
(q̇ = Sice = 0), equation (5.35) reduces to

S0 = Sml∕
(
1 + R-T∕QL

)
(5.37)

QL is the latent heat of ice divided by specific heat of
seawater, about 84 K for fresh ice. In this case if R = 1,
QL >> -T , so S0 → Sml. On the other hand, in water a
degree or two above freezing, if R is in the range given
above, then QL∕R ∼ -T and S0 may be considerably less
than Sml.

5.3.6 Double-diffusion during melting
Most measurements of turbulent heat flux have been
made at relatively small values of ΔT: generally from 0.1
to 0.3 K. In areas with low ice concentrations (e.g. in
the marginal ice zone) or where ice encounters inflow-
ing warm water (e.g. Whaler’s Bay north of Svalbard),
ΔT may reach values an order of magnitude or more
greater, with much higher melt rates (decimetres day–1)
and presumably increased double-diffusive tendency.

When melting depresses salinity at the interface,
1h∕St∗ > 1. For commonly encountered ranges of

stress and thermal forcing (5 ≤ u∗0 ≤ 15 mm s–1 ;
0.05 ≤ ΔT ≤ 0.5 K) observed during the field pro-
grammes, 1h differs from St∗ by less than 2% when
R = 1 (no double diffusion), while for R = 70, it is more
than twice as large (McPhee, 2008a, figure 6.6).

The rate-limiting impact of salt diffusion can be
examined (Figure 5.12) by considering solutions
to equation (5.35) for moderate interface stress
(u∗0 = 0.015m s–1) with bulk thermal driving, ΔT,
ranging from 0 (freezing) to 3 K (as might be encoun-
tered when ice drifts across a front in the marginal ice
zone), and limiting values of R. In the first case with no
double diffusion, we specify R = 1, 1h = 0.0058. For the
second, strong double diffusion: R = 70, 1h = 0.0137.
In both cases, the heat exchange coefficient is chosen
so that the ‘three-equation’ solution matches the bulk
expression in equation (5.29) (with St∗ = 0.0057) for
small values of ΔT. We emphasize that without direct
knowledge of either R or 1h, the main observational
constraint is the measured bulk Stanton number. For
R = 1, the interface thermal driving, -T, (Figure 5.12a,
dashed curve) is almost indistinguishable from the
bulk driving, i.e. T0 remains very close to the freezing
temperature of the far field. For R = 70 (solid curve),
-T is much reduced and exhibits positive curvature
with increasing ΔT. As might be expected, the saline
driving, -S, (Figure 5.12b) is highly dependent on the
double-diffusive strength. For R = 70, -S approaches 18
psu for large ΔT. For R = 1, it remains within about 1
psu of the far field, even with strong thermal forcing.
Basal heat flux (Figure 5.12c) follows directly from -T.
At high values of ΔT, heat flux for R = 70 is half as large
again as for R = 1. In the latter case, the bulk relation
(overlain grey curve in Figure 5.12c) is essentially the
same as the three-equation solution.

Because of large temporal and spatial gradients in
marginal ice zones, it is notoriously difficult to mea-
sure both ⟨w′T ′⟩ and ⟨w′S′⟩ accurately in a rapidly
melting environment; however, by careful analysis
of turbulence measurements in Whaler’s Bay north
of Svalbard, Sirevaag (2009) obtained independent
estimates of the exchange coefficients: 1h = 0.0131
and 1S = 4 × 10−4 with R ≈ 33 when the average heat
flux was 268W m–2. He also reported a direct bulk
Stanton number: St∗ = 0.0084, which is reasonably
close to (-T∕ΔT)1h = 0.0088 obtained from reported
values. His results thus confirm that heat flux increases
with thermal driving in a superlinear fashion, with
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Figure 5.12 (a) -T = Tw – T0 versus ΔT = Tw – Tf (Sw) for R = 1, (dashed) and R = 70, 1h = 0.0137 (solid). Other parameters:
u∗0

= 0.015 m s–1; Sw = 33 psu; Sice = 4 psu. (b) -S vs ΔT. (c) Basal heat flux versus ΔT. The curve labelled R = 1 is overlain in grey
by the linear relation: Hf = "cpSt∗u∗0

ΔT with St∗ = 0.0057.

potential importance for estimating ice melt and IOBL

stratification in low ice concentration conditions.

5.3.7 False bottoms
Double diffusion also appears to be the controlling

factor in the persistence and migration of false bottoms.

These occur when concavities in the ice underside

fill with fresh meltwater, forming a thin ice layer at

the interface between the fresh water and underlying,

colder seawater. Observations of the bottom elevation

changes at AIDJEX station Big Bear during the summer

of 1975 by A. Hanson showed that gauges deployed at

the start of summer in relatively thick ice (280–300 cm)

indicated relatively continuous bottom melt over the

course of the summer, totalling 30–40 cm. In contrast,

gauges deployed in thinner ice (160–175 cm) showed
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little net bottom melt and even, in some cases, net

growth. Hanson attributed this to the formation of

so-called false bottoms that occur when concavities in

the ice underside fill with fresh meltwater, which then

forms a thin layer of ice at the interface with colder

seawater. During one 10-day period in August 1975,

four of the shallow thickness gauges showed similar

changes in bottom elevation, averaging about 15 cm,

while the three thick-ice gauges each showed bottom

ablation of about 5 cm.

Notz et al. (2003) investigated evolution of false

bottoms in both laboratory and natural settings, includ-

ing a simulation of the AIDJEX event just described.

They found that the observed upward migration of the

false bottoms could be well simulated with R = 50, but

that with R = 1 (no double diffusion) and observed

stress, the initial false bottoms disappeared within a

short time. Our experience, particularly at SHEBA, has

instead been that they form repeatedly and migrate

upwards during the summer, making space for new

false bottoms. This produces interleaved layers of ice

and fresh water by the time freeze-up begins; numerous

examples were observed during the setup for SHEBA in

October 1997.

False bottoms may have an important impact on the

ice–albedo feedback. First, they shield the thinnest pack

ice from direct contact with above-freezing seawater,

greatly reducing bottom ablation and reducing the

area of low-albedo open water when sun angles are

highest. Second, depending on how extensively they

cover the ice undersurface, because of the large positive

temperature gradient across the fresh ice layer, they act

as a source of heat for the upper ocean (Figure 5.13a).

The effective bulk Stanton number for ice with area

fraction Afb of the undersurface covered by false bottoms

or meltwater ponds is:

St∗eff = Htotal∕("cpu∗0ΔT) =
(1 − Afb)⟨w′T ′⟩0 + Afb⟨w′T ′⟩fb

u∗0ΔT

As illustrated in Figure 13(b) using results from the

double-diffusive false bottom model of Notz et al.

(2003), relatively small Afb may significantly decrease

the effective heat transfer from the ocean, again

lessening the amount of melting when sun angles

are high.

5.3.8 Heat and salt exchange during
freezing
If the ice–water interface retained its double-diffusive
character when ice was forming rather than melting,
heat would be extracted from the water column faster
than salt was added, and a mixed layer that was initially
at freezing would become super-cooled, presumably
forming frazil ice. With exchange coefficients appro-
priate for melting and moderate growth rates, the
three-equation formulation indicated significant frazil
formation at the same time, slowing direct congelation
growth (Mellor et al., 1986; Steele et al., 1989). Holland
et al. (1997) considered double-diffusive effects during
freezing with a coupled sea ice–ocean numerical model
with several ice thickness categories. Frazil accreted
equally on all thickness categories with a net increase
in heat loss and equilibrium thickness because of more
conductive flux through thinner categories.

Observations of multi-year pack ice in the Arctic
reveal that neither super-cooling nor frazil production
is extensive (Weeks & Ackley, 1986), suggesting that the
freezing process was not much affected by double diffu-
sion, at least not to the degree suggested by the models.
An experiment designed to test this was conducted in
Van Mijenfjorden, Svalbard, in tidal flow under growing
fast ice. As reported by McPhee et al. (2008), turbulence
data showed an average heat flux of about 1.5W m–2

when upward heat conduction in the ice was estimated
to be about 21W m–2, producing a (downward) salinity
flux of about −2 × 10−6 psu m s–1. These data ruled out
anything but weak double diffusion, and a more exten-
sive modelling study, using data from the main project
and the subsequent student exercises, confirmed that
the three-equation interface solution could adequately
describe the measured heat flux 1m below the ice only
for R = 1.

The IOBL response thus corroborates studies showing
that salinity increases rapidly near the base of grow-
ing ice (Notz & Worster, 2009) and that the simple
advective approach for describing the salt balance at the
interface (equation 5.28) is not adequate for growing
ice. If equation (5.35) is retained as the governing
description, then when ice is freezing, the VMF data
and modelling suggest that R = 1, which implies that
⟨w′S′⟩0 = −⟨w′T ′⟩0∕m.

An interesting twist on heat transfer at the interface
of growing ice was provided by turbulence measure-
ments 1m beneath fast ice near Erebus Glacier Tongue,
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Figure 5.13 (a) Upward heat flux under thick ice (dark shading) and under false bottoms (light shading) from the Arctic Ice Dynamics
Joint Experiment (AIDJEX) simulation. Mean values are listed on the right. (b) Corresponding effective bulk Stanton number (St∗)eff
as a function of undersurface false bottom (or melt pond) area coverage.

Antarctica, in October 2010. The upper 35m of the
water column was isothermal such that the top 15m
was super-cooled, i.e. below its pressure-dependent
freezing temperature. Super-cooling is often observed
near ice shelves debouching into McMurdo Sound as
water that has cooled as it circulated under thick ice
advects from under the shelf and rises. Although limited
in duration by ice accretion on the instrumentation,
our results indicated tidally modulated, but consistently
downward heat flux (Figure 5.14). Our interpretation
is that upward conduction of heat away from the
interface in the ice column (∼2.3m thick with 10 cm
snow) was insufficient to balance heat released as the
super-cooled water finds suitable nucleation sites on the
ice undersurface (Robinson et al., 2010). Measured heat
flux is shown in Figure 5.14(c) (pentagram symbols
with standard deviation error bars), whereas the shaded
curve indicates the bulk heat flux, Hbulk = cHu∗ΔT,
where cH = 0.01 is the heat transfer coefficient, and ΔT
is the temperature measured 1m below the ice minus
the freezing temperature at 3 dbar. While the record is
too short to draw definitive conclusions, the transfer
coefficient is similar, if somewhat larger, than St∗eff
found for melting. As freezing is adding some negative
buoyancy, an increase in the transfer coefficient is not

unexpected. Tidal modulation of the heat flux illustrates
the role of shear stress in removing heat from the
interface, and suggests that platelet growth on the ice
underside may be rate-limited by heat flux into the
ocean when conductive flux in the ice column slows.

5.3.9 Discussion
Understanding of thermodynamics and salt transfer at
the growing or melting ice–ocean boundary is far from
complete. Even the assumption that fluid at the inter-
face is at the liquidus temperature is open to question:
Worster (personal communication, 2006) has pointed
out that during ice growth, if heat influx outpaces salt
loss in fluid draining through brine channels travers-
ing a negative vertical temperature gradient, then it may
enter the upper ocean at a temperature slightly above its
salinity-determined freezing point.

While recognizing these limitations, McPhee et al.
(2008) suggested that a parameterization of boundary
fluxes for sea ice in direct contact with the IOBL
is as follows: with Tw, Sw, and u∗0 specified either
from measurements or modelling/parameterization,
along with pertinent ice parameters (Sice, .q), solve
equation (5.35) with 1h = 0.0093 and R = 35 ( to satisfy
the St∗ constraint). If the resulting heat balance grows
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Figure 5.14 Current speed (a), friction speed (b) and turbulent heat flux (c) 1m below fast ice near Erebus Glacier Tongue, Antarctica.
Plus symbols (+) in (a) are current speeds for each 15-minute average used for covariance realizations. For direct flux measurements
[circles in (b) and pentagrams in (c)], error bars indicate the standard deviation of 15-minute covariance realizations in each 2-hour
average. The shaded curve in (c) is the bulk heat flux relation discussed in the text.

ice, then redo the calculation with R = 1 to eliminate
double-diffusive effects.

References

Barenblatt, G.I. (1996) Scaling, Self-similarity and Intermediate
Asymptotics. Cambridge University Press, Cambridge.

Blackadar, A.K. & Tennekes, H. (1968) Asymptotic Similarity in
Neutral Barotropic Planetary Boundary Layers. Journal of the
Atmospheric Sciences, 25, 1015–1020.

Burchard, H.& Baumert, H. (1995) On the performance

of a mixed-layer model based on the k-2 turbulence

closure. Journal of Geophysical Research: Oceans, 100(C5),

8523–8540.

Businger, J.A., Wyngaard, J.C., Izumi, Y. & Bradley, E.F. (1971)

Flux-profile relationships in the atmospheric surface layer.

Journal of the Atmospheric Sciences, 28, 181–189.

Crawford, G., Padman, L. & McPhee, M.G. (1999) Turbulent

mixing in Barrow Strait. Continental Shelf Research, 19,

205–245.



!

! !

!

158 Chapter 5

Ekman, V.W. (1905) On the influence of the earth’s rotation
on ocean currents. Arkiv för Matematik, Astronomi och Fysik, 2,
1–52.

Feltham, D.L., Untersteiner, N.,Wettlaufer, J.S. &Worster, M.G.
(2006) Sea ice is amushy layer.Geophysical Research Letters, 33,
L14501.

Gill, A.E. (1982)Atmosphere-OceanDynamics, XV . Academic Press,
New York.

Harcourt, R.R. (2005) Thermobaric cabbeling over Maud Rise:
theory and large eddy simulation. Progress in Oceanography, 67,
186–244.

Hibler, W.D. (1979) A dynamic thermodynamic sea ice model.
Journal of Physical Oceanography, 9, 815–846.

Holland, M.M., Curry, J.A. & Schramm J.L. (1997) Modeling
the thermodynamics of a sea ice thickness distribution: 2. Sea
ice/ocean interactions. Journal of Geophysical Research: Oceans,
102, 23093–23107.

Hunkins, K. (1966) Ekman drift currents in the Arctic Ocean.
Deep Sea Research and Oceanographic Abstracts, 13, 607–620.

Johannessen, O.M. (1970) Note on some vertical profiles below
ice floes in the Gulf of St. Lawrence and near the North Pole.
Journal of Geophysical Research, 75, 2857–2861.

Langleben, M.P. (1982) Water drag coefficient of first-year sea
ice. Journal of Geophysical Research: Oceans, 87(C1), 573–578.

Lettau, H. (1979) Wind and temperature profile prediction
for diabatic surface layers including strong inversion cases.
Boundary-Layer Meteorology, 17, 443–464.

Lu, P., Li, Z., Cheng, B. & Leppäranta M. (2011) A parameteri-
zation of the ice-ocean drag coefficient. Journal of Geophysical
Research: Oceans, 116, C07019.

Maslanik, J., Stroeve, J., Fowler, C. & Emery, W. (2011)
Distribution and trends in Arctic sea ice age through spring
2011.Geophysical Research Letters, 38, L13502.

Maykut, G.A. (1985) An Introduction to Ice in Polar Oceans. Reports
of the Applied Physics Laboratory. University of Washington,
Seattle, WA.

Maykut, G.A., & Untersteiner, N. (1971) Some results from a
time-dependent thermodynamic model of sea ice. Journal of
Geophysical Research, 76, 1550–1575.

McPhee, M.G. (1981) An analytic similarity theory for the
planetary boundary layer stabilized by surface buoyancy.
Boundary-Layer Meteorology, 21, 325–339.

McPhee, M.G. (1988) Analysis and Prediction of Short-Term Ice
Drift. Journal of Offshore Mechanics and Arctic Engineering, 110,
7.

McPhee, M.G. (1990) Small Scale Processes. In: Polar Oceanog-
raphy, Part A Physical Science (Ed. W.O. Smith), pp. 287–334.
Academic Press, San Diego, CA.

McPhee, M.G. (1992) Turbulent heat flux in the upper ocean
under sea ice. Journal of Geophysical Research: Oceans, 97,
5365–5379.

McPhee, M.G. (1994) On the turbulent mixing length in the
oceanic boundary layer. Journal of Physical Oceanography, 24,
2014–2031.

McPhee, M.G. (2002) Turbulent stress at the ice/ocean interface
and bottom surface hydraulic roughness during the SHEBA
drift. Journal of Geophysical Research: Oceans, 107(C10), 8037.

McPhee, M.G. (2004) A spectral technique for estimating tur-
bulent stress, scalar flux magnitude, and eddy viscosity in
the ocean boundary layer under pack ice. Journal of Physical
Oceanography, 34, 2180–2188.

McPhee, M.G. (2008a) Physics of early summer ice/ocean
exchanges in the western Weddell Sea during ISPOL. Deep
Sea Research Part II, 55, 1075–1097.

McPhee, M.G. (2008b) Air-Ice-Ocean Interaction Turbulent Ocean
Boundary Layer Exchange Processes, IX.Springer, New York.

McPhee, M.G. (2012) Advances in understanding ice–ocean
stress during and since AIDJEX. Cold Regions Science and

Technology, 76–77, 24–36.
McPhee, M.G. (2013) Intensification of geostrophic currents

in the Canada Basin, Arctic Ocean. Journal of Climate, 26,
3130–3138.

McPhee, M.G. & Smith, J.D. (1976) Measurements of the
turbulent boundary layer under pack ice. Journal of Physical
Oceanography, 6, 696–711.

McPhee, M.G. & Martinson, D.G. (1994) Turbulent mixing
under drifting pack ice in the Weddell Sea. Science, 263,
218–221.

McPhee,M.G. & Stanton, T.P. (1996) Turbulence in the statically
unstable oceanic boundary layer under Arctic leads. Journal
of Geophysical Research: Oceans, 101, 6409–6428.

McPhee, M.G., Maykut, G.A. & Morison, J.H. (1987) Dynamics
and thermodynamics of the ice/upper ocean system in the
marginal ice zone of the Greenland Sea. Journal of Geophysical
Research: Oceans, 92, 7017–7031.

McPhee,M.G., Kottmeier, C. &Morison, J.H. (1999) Ocean heat
flux in the central Weddell Sea duringWinter. Journal of Phys-
ical Oceanography, 29, 1166–1179.

McPhee, M.G., Morison, J.H. & Nilsen, F. (2008) Revisiting
heat and salt exchange at the ice-ocean interface: Ocean flux
and modeling considerations. Journal of Geophysical Research:
Oceans, 113, C06014.

Mellor, G.L. & Yamada, T. (1982) Development of a turbulence
closure model for geophysical fluid problems. Reviews of Geo-
physics, 20, 851–875.

Mellor, G.L., McPhee, M.G. & Steele, M. (1986) Ice-Seawater
Turbulent Boundary Layer Interaction withMelting or Freez-
ing. Journal of Physical Oceanography, 16, 1829–1846.

Nghiem, S.V., Rigor, I.G., Perovich, D.K., Clemente-Colón,
P., Weatherly, J.W.& Neumann, G. (2007) Rapid reduction
of Arctic perennial sea ice. Geophysical Research Letters, 34,
L19504.

Niiler, P.P. & Kraus, E.B. (1977) One-dimensional models of the
Upper Ocean. In: Modelling and Prediction of the Upper Layers of
the Ocean (Ed. E.B. Kraus). Pergamon Press, Oxford.

Notz, D. & Worster, M.G. (2009) Desalination processes of
sea ice revisited. Journal of Geophysical Research: Oceans, 114,
C05006.



!

! !

!

The sea ice–ocean boundary layer 159

Notz, D., McPhee, M.G., Worster, M.G. et al. (2003) Impact of
underwater-ice evolution on Arctic summer sea ice, Journal
of Geophysical Research: Oceans, 108, 3223.

Obukhov, A.M. (1971) Turbulence in an atmosphere with a
non-uniform temperature, Boundary-Layer Meteorology, 2,
7–29.

Parkinson, C.L. & Washington, W.M. (1979) A large-scale
numerical model of sea ice. Journal of Geophysical Research:
Oceans, 84, 311–337.

Pease, C.H., Salo, S.A. & Overland, J.E. (1983) Drag measure-
ments for first-year sea ice over a shallow sea. Journal of Geo-
physical Research: Oceans, 88, 2853–2862.

Pedlosky, J. (1987) Geophysical fluid dynamics, 2nd edn., xiv,
Springer-Verlag, New York.

Perovich, D.K., Grenfell, T.C., Richter-Menge, J.A., Light, B.,
Tucker, W.B. & Eicken, H. (2003) Thin and thinner: Sea ice
mass balance measurements during SHEBA. Journal of Geo-
physical Research: Oceans, 108, 8050.

Pollard, R.T., Rhines, P.B. & Thompson, R.O. R.Y. (1973) The
deepening of the wind mixed layer, Geophysical Fluid Dynam-
ics, 3, 381–404.

Price, J.F., Weller, R.A. & Pinkel, R. (1986) Diurnal cycling:
Observations and models of the upper ocean response
to diurnal heating, cooling, and wind mixing, Journal of
Geophysical Research: Oceans, 91, 8411–8427.

Robinson, N.J., Williams, M.J. M., Barrett, P.J. & Pyne, A.R.
(2010) Observations of flow and ice-ocean interaction
beneath the McMurdo Ice Shelf, Antarctica. Journal of
Geophysical Research: Oceans, 115, C03025.

Rossby, C.-G. & Montgomery, R.B. (1935) The layer of
frictional influence in wind and water current. Papers in
Physical Oceanography and Meteorology, Massachusetts Instituteof
Technology and Woods Hole Oceanographic Institute, 3, 1–100.

Shaw, W.J., Stanton, T.P., McPhee, M.G. & Kikuchi, T. (2008),
Estimates of surface roughness length in heterogeneous

under-ice boundary layers, Journal of Geophysical Research:
Oceans, 113, C08030.

Shaw, W.J., Stanton, T.P., McPhee, M.G., Morison, J.H. & Mar-
tinson, D.G. (2009) Role of the upper ocean in the energy
budget of Arctic sea ice during SHEBA. Journal of Geophysical
Research: Oceans, 114, C06012.

Shirasawa, K. (1986) Water stress and ocean current measure-
ments under first-year sea ice in the Canadian Arctic. Journal
of Geophysical Research: Oceans, 91, 14305–14316.

Sirevaag, A. (2009) Turbulent exchange coefficients for the
ice/ocean interface in case of rapid melting.Geophysical
Research Letters, 36, L04606.

Skyllingstad, E.D., Paulson, C.A., Pegau, W.S., McPhee, M.G. &
Stanton, T. (2003) Effects of keels on ice bottom turbulence
exchange, Journal of Geophysical Research: Oceans, 108, 3372.

Steele, M., Mellor, G.L. & McPhee, M.G. (1989) Role of the
molecular sublayer in the melting or freezing of sea ice.
Journal of Physical Oceanography, 19, 139–147.

Toole, J.M., Timmermans,M.L., Perovich, D.K., Krishfield, R.A.,
Proshutinsky, A. & Richter-Menge, J.A. (2010), Influences of
the ocean surface mixed layer and thermohaline stratifica-
tion on Arctic Sea ice in the central Canada Basin. Journal of
Geophysical Research: Oceans, 115, C10018.

Turner, J.S. (1973) Buoyancy Effects in Fluids, Cambridge Univer-
ity Press, Cambridge.

Untersteiner, N. (1961) On the mass and heat budget of Arctic
sea ice. Archives for Meteorology, Geophysics and Bioclimatology
Series A, 12, 151–182.

Weeks, W.F & Ackley, S.F. (1986) The growth, structure, and
properties of sea ice, in The Geophysics of Sea Ice (Ed. by N.
Untersteiner), pp. 9–164, Plenum Press, New York.

Wettlaufer, J.S., Worster, M.G. &Huppert, H.E. (1997) The
phase evolution of young sea ice. Geophysical Research Letters,
24, 1251–1254.


