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I. Introduction

The direct interaction between polar oceans and the atmosphere occurs
across a relatively thin boundary layer, which differs from the upper part of
the rest of the world ocean in that its properties and physics are affected
directly by a layer of ice which may reach several meters in thickness. The
small-scale oceanic processes which affect air-sea-ice interaction in polar
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regions are the subject of this chapter. The main thrust is describing the
physical processes that control the exchange of heat, mass, and momentum
near the surface when sea ice is present. The problems addressed, which are
pertinent in most respects to all upper-ocean physics, tax the best observa-
tional and theoretical tools we have. Oceanographic measurements in polar
oceans are expensive and often difficult. Remote sensing is hampered by
long polar nights and persistent cloudiness. Quantitative theoretical treat-
ment requires a thorough understanding of turbulent boundary layer dy-
namics, influenced by rotation, buoyancy, and sea ice. Despite the difficul-
ties, there has been heightened interest and much progress in recent years,
driven by both increased operational needs and recognition of the role that
polar and subpolar oceans play in long-term climate fluctuations, especially
ventilation of the deep ocean.

The story begins nearly a century ago with F. Nansen and the drift of the
research vessel Fram in the ice pack of the Eurasian basin of the Arctic
Ocean. Nansen observed that the ice consistently veered 20° to 40° to the
right of the surface wind. He correctly surmised that the veering resulted
from the Coriolis force (i.e., the apparent deflection of an object moving in a
rotating reference frame) acting differentially at various levels in the shear
flow beneath the ice. Nansen interested V. Ekman in the problem, and in a
remarkable paper published in 1905, Ekman developed the mathematics of
a sheared fluid on a rotating surface, discovering elegantly simple spirals in
theoretical profiles of mean current and turbulent stress. His theory pre-
dicted that surface current should be 45° to the right (cum sole) of surface
stress, which explained qualitatively Nansen’s observations. He also showed
how large, circular motions superimposed on the mean drift (inertial oscilla-
tions) could develop in the upper ocean and further suggested that the eddy
viscosity relating current shear to turbulent stress depended on surface stress.
In the last two areas, Ekman was far ahead of his time, and it was not until the
latter half of the century that observations (and, in some respects, theory)
caught up with him.

Ekman’s paradigm failed to account for a thin region near the ice/ocean
interface where strong shear develops parallel to the direction of interfacial
stress. By considering data from Soviet Polar Drift stations, Shuleikin (1938)
patched the ice to the Ekman solution via a thin surface layer and worked out
the intricate force balance that determines ice response to wind in the ab-
sence of internal stress gradients. Reed and Campbell (1962) later incorpo-
rated these concepts into their ice modeling work, modifying them some-
what by letting the eddy viscosity of the lower, Ekman layer depend on the
interfacial stress.

Strong inferential evidence for Ekman dynamics was found in the right-
ward (leftward in the southern hemisphere) deflection of ice drift and surface
currents, but there was no unequivocal example of an Ekman spiral in
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upper-ocean currents until Hunkins (1966) presented measurements made
from Arctic Drift Station Alpha during the summer of 1958 (Fig. 6.1).
Hunkins interpreted his measurements as including three more or less sepa-
rate currents: (1) a geostrophic current, V,, associated with slope of the sea
surface and not dependent on the recent, local wind; (2) the Ekman spiral up
through the boundary layer, culminating in V,; and (3) a thin (less than 2 m)
layer of intense shear, indicated by the relative velocity, V,. These three
elements are present in nearly all current measurements made from drifting
ice, provided the currents are averaged long enough that inertial effects are
not dominant.

During the 1960s and 1970s, advancing technology and increased interest
in high-latitude oceanography led to greater understanding of ice/ocean
interaction. This was accompanied by a gradual shift in attitude from treat-
ing the ice as a barrier preventing oceanic access to appreciating its potential
as an amazingly stable platform for conducting high-resolution experiments

v, cm/s

|p u, cm/s
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Figure 6.1 Vector average of nine current profiles taken over a 2-month period at drift station
Alpha (filled circles), shown with Ekman current spiral for eddy viscosity of 23.8 cm?s~! (open
circles). Reprinted with permission from Hunkins (1966); copyright by Pergamon Press.
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in the boundary layer and pycnocline. Neshyba et al. (1971) reported, in
unprecedented detail, small-scale step structure in the thermocline under
drifting ice island T-3. Pilot studies of the Arctic Ice Dynamics Joint Experi-
ment (AIDJEX) in 1971 and 1972 included the elegant turbulence experi-
ments of Smith (Smith, 1974; McPhee and Smith, 1976). The year-long
AIDJEX Main Experiment (1975 -1976) provided unsurpassed time series
of upper-ocean currents and temperature/salinity profiles at multiple sta-
tions in the central Arctic (Hunkins, 1980). At the same time, rapid advances
in atmospheric planetary boundary layer theory, aided by computer model-
ing, were providing a broader context for interpreting the measurements.

After AIDJEX, emphasis shifted toward the complicated interactions that
occur near the lateral boundaries of the sea ice, i.e., the marginal ice zone
(MIZ). Large, multidisciplinary experiments such as MIZEX West in the
Bering Sea and the series of MIZEX East experiments in the Greenland Sea
MIZ examined the interplay between thermodynamics and dynamics as the
ice encounters relatively warm water. Interest in high Arctic upper-ocean
processes, especially the internal wave climate, has revived, as witnessed by
the Arctic Internal Wave Experiment (AIWEX 85) and the planned
Co-ordinated Eastern Arctic Experiment (CEAREX) operations in the east-
ern Arctic. These projects have spawned significant improvements in mea-
surement technology, including sophisticated velocity/temperature/con-
ductivity profilers (Morison et al., 1987; Villanueva and van Leer, 1987),
acoustic Doppler profilers (Pinkel ez al., 1986), and direct turbulent heat flux
measurements (McPhee, 1986a). A recent transect of the mixed layer in the
Weddell Sea (Gordon, 1987) has revealed fascinating contrasts with the
relatively well-documented Arctic mixed layer that call out for further study.

It would be difficult to summarize adequately all of this work, even the
most recent, in a short chapter. The intent is rather to provide the reader with
a general view of our current understanding of small-scale processes near the
ice/ocean interface. As such, the chapter necessarily reflects some of my
personal views, which a properly skeptical reader will recognize. In some
cases (specifically, Section III,C), what I call “simple” might justifiably be
called anything but; however, the description is related to alternatives,
mainly numerical modeling, and I have tried to identify the underlying
concepts, which, in the main, are quite simple.

II. Fundamental Physics
This section presents a brief synopsis of the fundamental fluid equations

pertinent to understanding upper-ocean transfer processes. For a reader not
familiar with the fluid equations or elementary vector and tensor notation, a
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number of standard textbooks treat the concepts well. Gill (1982, Chapters 3
and 4) presents an especially clear and useful development of the state
equations, conservation equations, and equation of motion.

A. Conservation Equations

The equations that govern fluid behavior may be stated in relatively compact
form. Let € be an arbitrary property of the fluid, say density, internal energy
(or equivalently in our case, heat content), or concentration of salt or some
other contaminant such as frazil ice crystals, or a vector quantity such as
momentum. Consider a fixed, infinitesimal control volume in the fluid.
Within the volume, the local rate of change of € will depend on a source of the
property, Q., less the net flux, F,, integrated over the surface of the control
volume. By Gauss’s theorem

de/ot=Q,—V - F. (6.1)

For scalars, the source term Q, is associated mainly with phase changes;
e.g., if frazil crystals form in supercooled water, heat and salt are released
locally, so local internal energy and salinity increase. In most situations, the
source term for scalars will be small.

The flux vector (or tensor when € is momentum) F, may comprise several
elements, examples being the advective flux eu, where u is the local velocity
vector; a molecular diffusion term — pk, Ve, where k, is the molecular diffu-
sivity coefficient; or, when € is internal energy, a radiative flux associated
with insolation. By far the most important element for the rotational bound-
ary layer (RBL) is the advective term, so as a first approximation the flux
vector may be written

F.=eu (6.2)

but note that there may be special circumstances where other terms are
important, pertinent examples being solar heating when ice concentration is
low (radiative flux divergence) and molecular viscosity effects in a thin layer
near the ice/ocean interface.

For dynamical purposes, most oceanic flows may be treated as incom-
pressible, meaning that density p following fluid parcels does not change (i.e.,
the material derivative is zero). This leads directly to the continuity equation

V- u=—(1/p) (dp/dr) =0 (6.3)

If Eq. (6.2) (advective flux) and Eq. (6.3) (continuity) are incorporated
into Eq. (6.1), the general conservation equation may be written

de/ot+u - Ve=Q, 6.4)
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Substituting salinity p.S for €, the conservation of salt is expressed as
aS/3t +u - VS = Qg/p (6.5)

where Qs is a salinity source within the fluid (e.g., from nucleation of frazil
crystals).

Provided divergence of radiative flux is incorporated into a source term
(., which may also include latent heat associated with phase change, we can
write a similar equation for temperature:

aT/ot +u - VT = Q,/pc, (6.6)

where ¢, is the specific heat at constant pressure. Specific heat varies with
temperature, salinity, and pressure (see Gill, 1982, Table A3.1); however, the
variation is relatively small, and here we use a constant value of
3980 J kg~! Kt

Now substitute vector momentum pu for € in Eq. (6.4). We have

du/ot +u - Vu=Qy/p (6.7)

In this interpretation, the source term is the vector sum of the negative
gradient of pressure in the fluid, —Vp, and gravity, — gk, where k is the
vertical unit vector. Thus we arrive at Euler’s equation

ou/dt+u-Vu=—(1/p) Vp — gk (6.8)

This is, of course, a highly simplified derivation of Newton’s second law for
fluids. Batchelor (1970, Chapter 3) treats the subject in detail.

B. Reynolds Stress

Ignoring molecular effects in the conservation equations is not the same as
assuming that the fluid is frictionless. When ice moves in response to wind, it
encounters drag from the water, which indicates a net downward momen-
tum flux. Unless the forcing is very small, we know that in the bulk of the
RBL molecular transfer processes can account for only a minute fraction of
the total momentum flux. The remainder occurs in a way that can best be
shown by manipulating the advective term in the momentum equation.
Suppose that the flow velocity consists of rapid variations superimposed on
an underlying “mean” signal that changes relatively slowly in response to the
large-scale forcing. Over some area large compared with the scale of the
small, frequent fluctuations, we may express the local instantaneous flow as

u=(u) +vu 6.9)

where the angle brackets indicate the mean over the area and W’ is the
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deviation from the mean ({(u’) = 0). With the continuity condition, Eq.
(6.3), and the well-known rule for the average of products,

(uyu) = (u) () + (ujy; (6.10)

the average of the advective term [the second term on the left of Eq. (6.8)] can
be expressed in component form as

du; ou;) , o uiu;
(uia%ej>=<(ui>%+<TxL) € (6.11)

where e; is the unit vector in the j direction (j = 1, 2, 3; repeated indices

imply summation; and by convention e, is the vertical unit vector k).
Unless otherwise noted, from here on u written without angle brackets

represents the underlying mean flow velocity. The Euler equation becomes

du/ot+u-Vu=—(1/p)Vp—gk+V -1 (6.12)
where the components of the symmetric tensor 7 are
Ty = —(uiuj) (6.13)

which is the kinematic Reynolds stress. Reynolds stress is most often asso-
ciated with more or less chaotic deviations called turbulence, but internal
waves (which are not in general turbulent) can also transport momentum by
correlation of velocity deviations.

If € is a scalar property, we may similarly write the general scalar conser-
vation equation [Eq. (6.4)] as

d/ot+u-Ve=Q,— V- (eUW) (6.14)

where unprimed quantities again refer to underlying mean values.

C. Rotation and Geostrophy

The acceleration of a fluid parcel moving with velocity u relative to a frame of
reference that is rotating about some axis with angular velocity Q includes
two terms that are not present in an inertial reference frame. One of these is a
centripetal acceleration, which is usually incorporated into the apparent
gravity g. The other term is the Coriolis acceleration 2 £ X u and is often of
central importance in geophysical flows. A special symbol f (the Coriolis
parameter) denotes twice the vertical component of rotation,

f=2Q,=2Qsin ® (6.15)

where @ is the latitude (north positive) and Q the angular rotation speed of
the earth, 7.292 X 1075 s~ 1,
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If we ignore the vertical component of the Coriolis term, the Euler equa-
tion in a fixed-to-earth (rotating) frame is

du/dt+ fkXu=—(1/p)Vp—gk+V -1 (6.16)
The geostrophic current is defined by
Sk X uy=—(1/p) Vp (6.17)

Neglecting variation in air pressure, the surface geostrophic flow can be
expressed in terms of the gradient of sea surface elevation 7,

SkXu,=—gVn (6.18)

From Eq. (6.16), the geostrophic flow coincides with the actual flow only
in a steady state with no advective flux or Reynolds stress. It is often conve-
nient to consider flow relative to the surface geostrophic flow, e.g., wind-
driven currents with respect to a relatively slowly changing geostrophic flow.
With the approximation that the material derivative of u, is zero, we may
write Eq. (6.16) as

du jdt+fkXu=V"1 (6.19)

where u, = u — u,.

Equation (6.19) provides a simple relation between kinematic stress at the
surface (or ice/ocean interface) and net volume transport relative to the
underlying geostrophic flow. Since our primary concern is mean horizontal
current, it is convenient to express two-dimensional (horizontal) vectors as
complex numbers, that is, # = u + iv, where u and v are velocity compo-
nents in the x and y directions and i = v—1. This has the advantage of
simplifying notation and calculation (using straightforward complex arith-
metic) and will be used extensively in the following sections. When a nor-
mally complex quantity A is written without the caret, scalar magnitude is
implied, thatis, 4 =4 e, where 0 is the counterclockwise angle from the real
axis, 8 = tan! Im(4)/Re(A4). Note that complex multiplication and division
implies both scaling and rotation

AB = AB ¢04+%)
A/B = (A/B)e =%

For a horizontally homogeneous system (i.e., no horizontal gradients),
Eq. (6.19) becomes in complex notation

di,/dt + ifii, = 8%/0z (6.21)

where 7 is the horizontal traction vector component of the Reynolds stress
tensor,

(6.20)

t=—(ww)+i'w)) (6.22)
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We suppose that at some level the Reynolds stress driven by surface
momentum flux decreases to zero, so integrating Eq. (6.21) from the maxi-
mum depth of frictional influence, H, we have

d—j-tﬂ i =2z=0)=1
. (6.23)
M= f 4, dz
-H

This equation allows a steady-state balance in which the integrated trans-
port is equal to the surface stress divided by f, directed 90° cum sole (clock-
wise in the northern hemisphere) to the stress direction.

Suppose a system obeying Eq. (6.23), initially at rest, is subjected to a
step-function wind stress in the imaginary () direction, 7 = it,att = 0. The
solution for ¢ > 0 is

z
f

The locus of solutions of Eq. (6.24) in the complex plane is a circle of radius
t/fcentered at 7/fon the real axis; thus the transport vector traces a clockwise
circle about its mean value in one inertial period, 27/f, which is 12 h at the
pole. A trajectory traced out by the mean transport shows a series of cycloidal
scallops, called inertial oscillations. This may seem highly idealized, but in
fact we often find large circular motions superimposed on a relatively small
mean translation in ice drift trajectories (e.g., Hunkins, 1967; McPhee,
1978), which persist for up to 8 or 10 inertial periods and are clearly related to
abrupt changes in wind forcing,.

M) =-(1—eP)= jz, [1 — cos(f?) + i sin(f)] (6.24)

D. Fluid Properties

Density of seawater depends on pressure, temperature, and dissolved salts,
indicated by practical salinity S. Formulas for calculating density from T, p,
and S are given by Gill (1982, Appendix 3), along with tables for quick
reference.

It is often relative changes in density that are important dynamically, and
then it is convenient to relate the changes directly to changes in temperature
and salinity via expansion coefficients:

Aplp=—Pr AT+ B AS (6.25)

Bs has a weak dependence on temperature but for polar waters can be ap-
proximated by the constant value 0.81 X 1073 (Gill, 1982; Table A3.1). 8,
varies with both temperature and salinity (see, e.g., Table 3.1 of Neumann
and Pierson, 1966). Two points are worth noting. First, for salinities above
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about 25 ppt, the thermal expansion coefficient is positive for all tempera-
tures above freezing. Thus seawater does not exhibit a density maximum like
that found at about 4°C in fresh water. Second, at temperatures near freez-
ing, B is about an order of magnitude smaller than at moderate (15°C)
temperatures, so that at low temperatures the density is controlled mainly by
changes in salinity.

The UNESCO formula for the freezing temperature of saline water in
degrees Celsius is given by Gill (1982):

Ti(S, p) = —0.0575S + 1.710523 X 10-3 $32
—2.154996 X 10~4 S2 —7.73 X 10~3 p (6.26)

where S is salinity in parts per thousand and p is pressure in bars. A straight-
line fit to Eq. (6.26) yields 7, = —0.054S at surface pressure. Note that the
freezing point is depressed by about 0.008° for every 10-m increase in depth.
Thus water which is at its in situ freezing temperature at depth will be
supercooled if brought to higher levels.

II1. Turbulent Exchange: Processes and Scales

In this section, a relatively simple conceptual view of turbulence in the
under-ice RBL is constructed, using the fundamentals of Section II along
with basic scaling principles. We review the mixing-length hypothesis, dis-
cuss what controls the scales of the turbulence, and relate the concepts in a
heuristic model of turbulent exchange.

A. Turbulence

When inertial forces in a fluid become large compared with viscous forces
(i.e., as the Reynolds number increases), the fluid behavior becomes highly
nonlinear (chaotic) and a deterministic description of turbulent flow is vir-
tually impossible. We resort instead to characterizing the statistics of the
turbulent flow and seek to relate turbulent fluxes implicit in the statistics to
mean flow quantities. Much research and an extensive literature exist on
turbulence in rotating planetary boundary layers (see, e.g., Friehe, 1987,
Price et al., 1987; Wyngaard, 1985; Mellor and Yamada, 1982), although,
with the exception of the atmospheric surface layer, data are still relatively
sparse. Characteristics of turbulence in the ice/ocean boundary layer are
described by McPhee and Smith (1976) and reviewed by McPhee (1986b).
Although the general topic and its various theoretical underpinnings are far
too vast to attempt to summarize here, there are some surprisingly simple
ideas that explain much (but certainly not all!) about the behavior of the
ice/ocean RBL, even in relatively complex situations like the marginal ice
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zone. The intent of this section is not to present a comprehensive review but
rather to equip the reader with some useful tools for treating small-scale
processes.

There is no generally accepted definition of turbulence, but Tennekes and
Lumley (1972) list several characteristics of a turbulent flow which identify it
as such: (1) turbulence is irregular and seemingly random; (2) it is highly
diffusive; (3) it is always highly rotational; and (4) it is essentially dissipative,
meaning that the energy transfer in turbulence is always toward increasing
internal energy (and entropy) of the fluid at the expense of the flow’s overall
kinetic or potential energy. Turbulence accomplishes diffusion much more
efficiently than is possible by molecular processes alone. Ultimately, energy
is dissipated at molecular scales by molecular processes; the main impact of
turbulence is to involve many more molecules.

Picture a turbulent disturbance centered at some level in a flow with a
positive vertical gradient of some arbitrary property €. As it overturns, the
eddy (which is highly diffusive) will distribute an excess of € below the plane
and a deficit above. The net result is a downward flux of €. The mixing-length
hypothesis (see, e.g., Hinze, 1975, Chapter 5) is simply that this flux should
depend on three quantities: (1) the gradient of €; (2) a velocity scale u,
proportional to the eddy velocity in the direction of the gradient; and (3) a
length scale A characteristic of the distance over which the most energetic
eddies transport the fluid, such that the smaller eddies can “keep up” in
diffusing away deviations of € from the local ambient value. The simplest
expression for vertical flux is

F, = —ku,A d€/dz (6.27)

where k is von Karman’s constant, equal to 0.4.

By analogy with molecular diffusivity (which is proportional in an ideal
gas to the product of the root-mean-square velocity of the molecules and
their mean free path) we may define an “eddy diffusivity”

K, = kuA (6.28)

From Section II,B, when a flow with rapid fluctuations about some mean
value is averaged in an ensemble sense, Reynolds flux terms appear in the
conservation equations. Equation (6.27) provides a link between the turbu-
lent Reynolds fluxes and the mean flow properties. Our main concern is
vertical flux, and we have for temperature, salinity, and horizontal momen-
tum:

W'T'y=—K;98T/dz (6.29)
(w'S’"y =—K; 3S/oz (6.30)
t=—(u'w)y+i(v'w)) =K, dui/oz (6.31)
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In the context of the mixing-length hypothesis, the different eddy diffusi-
vities imply different length scales; e.g., under certain circumstances, mo-
mentum is “diffused” much more effectively (by pressure terms in the
covariance equations) than is a scalar like salt, which requires direct diffu-
sion at the molecular level. However, in the absence of density gradients and
far enough from solid boundaries, we expect the eddy diffusivities to be
roughly equivalent. In such cases, the “Reynolds analogy” is often invoked,
which treats all the eddy diffusivities as equal.

The mixing-length hypothesis is only one way of addressing the “closure”
problem of turbulence, i.e., relating the Reynolds flux terms to mean flow
properties. Another is “second-order” closure, in which ensemble-averaged
equations for the covariance equations are solved simultaneously with the
mean equations. A useful strategy is to solve numerically the full set of
equations, closed at second order, and then use the solutions to derive much
simpler equations for closure at the mean (first-order) level. Mellor and
Yamada (1982) describe a hierarchy of closure schemes, developed within
one basic theoretical framework, that has been used successfully to model
many different types of turbulent flow, including the under-ice RBL (Mellor
et al., 1986).

A different approach is the so-called large-eddy-simulation (LES) model,
which solves the time-dependent, three-dimensional equations for grid
scales small enough (within the inertial subrange of the turbulence spectrum)
to resolve the large, energy-containing eddies explicitly (e.g., Deardorff,
1972; Moeng, 1984). To learn about the ensemble statistics of the large
eddies, LES model output is essentially treated as a substitute for actual
measurements. The computing power required for LES models is formida-
ble, but as supercomputers become more accessible, LES models may pro-
vide useful answers for some difficult problems, e.g., how drag is affected by
various scales of under-ice topographic relief.

B. Scales Governing RBL Turbulence

Certain scaling principles seem to describe turbulent mixing in the ice-
ocean RBL reasonably well. The first is that the local turbulent velocity scale
u.in Eq. (6.27) is proportional to the square root of the horizontal turbulent
shear stress. Here we define the friction velocity scale as a vector rather than a
scalar.
p=t__ (u'w’) +i(v'w’)) (6.32)
T (u'w)2+ (v'w)p)14

The friction velocity at the ice/ocean interface is
flog = To/ VT (6.33)



6 Small-Scale Processes 299

In the RBL, stress decreases from its surface value to zero at depth; thus an
obvious scale for kinematic Stress is tegilag -

The length scale for vertical exchange depends on several factors, and
describing it correctly is the crux of the mixing-length problem. In a steady,
horizontally homogeneous RBL the scale is governed in varying degrees by
the distance from the surface, the “planetary” length, u. /fand the Obukhov
length associated with gravitational effects on turbulent overturn.

For a neutrally stratified turbulent flow in the vicinity of the “wall,” i.e.,
the ice/ocean or air/ocean interface, the length scale depends on the distance
from the wall

A=|z| (surface layer) (6.34)

Much is known about this flow regime (see, e.g., Hinze, 1975, Chapter 7),
which includes the lower tens of meters of the atmospheric boundary layer
and most turbulent flows important in engineering problems. Variation in
turbulent stress across the region of validity of Eq. (6.34) is small, and it is
often a fairly good approximation to set #. = constant = u.,, which results
in the “law of the wall”

i
g

1 1. |z
_ — == — — 6'
kln|z|+C !ln » (6.35)

where C [= —In(z,)/k] is an integration constant; z, is called the roughness
length; and {i is the velocity relative to the interface, which varies logarith-
mically with distance from the interface in the direction of stress. Equation
(6.35) is valid only in the region where the mixing length varies with z and
where stress is nearly constant. The region is commonly called the surface
layer and comprises roughly one-tenth of the entire RBL depth.

As the distance from the interface increases, the scale of the eddies does
not continue to grow without bound. In the outer, “free-turbulence” region
beyond the surface layer, we find from both measurements and dimensional
analysis (see also the stability analysis arguments of Stern, 1975, Chapter 8)
that the turbulent length scale for the neutral RBL is approximately

An=&u/f  (outer layer) (6.36)

where & is a constant, approximately equal to 0.05 (McPhee, 1981). If the
eddy scale increases linearly near the interface, the extent of the surface layer
is of order &y ue /f.

The third major factor affecting the length scale of turbulence in the RBL
is buoyancy, i.e., the gravitational force that tends to retard (or enhance, if
unstable) vertical motion when a density gradient is present. When varia-
tions in density are small relative to mean density, as is the case in the RBL,
the small fluctuations are important dynamically only when they occur in
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combination with gravity (the Boussinesq approximation). It is then conve-
nient to define a buoyancy flux

(b'w’) = (glp) (p'W') (6.37)

where (p’w’) is the Reynolds mass flux. [Although it violates the literal sense
of the word, the convention adopted here is that buoyancy flux and turbulent
mass flux are in the same direction; many authors prefer a minus sign in Eq.
6.37).]

There are two main sources of buoyancy flux in the ice-covered RBL:
melting or freezing at the ice/ocean interface and turbulent entrainment at
the mixed-layer/pycnocline interface. The buoyancy flux may be expressed
in terms of (kinematic) heat and salt flux using Eq. (6.25):

(b'w') = g(Bs(W'S") — B{wW'T")) (6.38)

Because of the disparity in expansion coefficients at low temperatures,
buoyancy flux in polar waters is controlled mainly by salinity, even though
the thermodynamic forcing is usually heat flux associated with temperature
gradients. The reason for this is that sea ice excludes all but a small fraction of
the salt in seawater as it freezes; hence freezing is associated with downward
buoyancy flux and melting with upward buoyancy flux, even though the
buoyancy due to heat flux is in the opposite sense.

Obukhov (1946, see English translation, 1971) examined the effect of
buoyancy on surface layer dynamics by considering the turbulent kinetic
energy budget (see, €.g., Tennekes and Lumley, 1972); however, a simpler
heuristic argument adapted from Businger and Arya (1974) serves our pur-
pose here. Consider again an overturning eddy in a density gradient. A parcel
of fluid with vertical velocity w’ will convert its kinetic energy to potential
energy after it has traveled a vertical distance A when

—gopA = —gg—/z) A2 o p(w'?y o« pu? (6.39)
Since
p/dz = —(p'W')/K =—(p'W’)/kiu. (6.40)
we have
A= R, pui/kg(p’w’y = R_L  (highly stable) (6.41)

where L, equal to u3/(k(w’b’)), is the Obukhov length, and the proportional-
ity constant R_ has been shown by Zilitinkevich (1975) to be the critical flux
Richardson number (the ratio of buoyancy to shear production terms in the
turbulent kinetic energy equation). The argument is that the length scale of
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turbulence in a highly stratified flow adjusts so that the kinetic energy is
roughly in balance with the potential energy gained as eddies overturn.

In summary, there are three length scales that affect vertical turbulent
exchange in a steady, horizontally homogeneous RBL: (1) the distance from
the ice/ocean (or air/ocean) interface, (2) some fraction of the planetary
length scale, u. /f; and (3) the Obukhov length, which is proportional to the
vertical distance a fluid parcel must travel in a stratified fluid in order to
convert its kinetic energy to potential energy. The smallest of these length
scales will usually determine the turbulence characteristics. A schematic of
the turbulence regime is shown in Fig. 6.2. At the surface, there are turbulent
stress and buoyancy flux. In the surface layer, the size of the largest and most
energetic eddies is controlled by the distance from the surface and, to a lesser
extent, by buoyancy effects. The eddies grow until they reach some limiting
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Figure 6.2 Schematic showing the breakdown of the upper-ocean system into three zones: (1)
surface layer, eddy size dependent mainly on distance from interface; (2) outer (mixed) layer,
eddy size dependent on u. /fand surface buoyancy flux; and (3) pycnocline, eddy size dependent
on stress and buoyancy flux at the interface between the mixed layer and the underlying density
gradient.
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size in the outer layer determined by the rotation, stress, and surface buoy-
ancy flux. The vertical exchange scale of the largest eddies will be compara-
ble to the surface layer thickness, and they will extend through the boundary
layer to some level determined either by Coriolis-induced attenuation of the
turbulent stress or by encountering a preexisting density gradient (pycno-
cline). If there is turbulent stress at the base of the mixed layer (7,), then an
eddy flux of heat and salt may occur there ((b’w’),), but gravitational forces
associated with a sharp jump in buoyancy across the interface (Ab) and the
underlying density gradient (characterized by the Brunt-Viiséli frequency
N) will dramatically reduce the size of the eddies.

C. A Heuristic Model for Turbulent Flux in the RBL

A useful tool in fluid dynamics is the concept of similarity, in which a whole
class of flows is reduced to one set of equations by nondimensionalizing with
carefully chosen scales. A familiar example is wind-tunnel testing of scale
airplane models, but the idea is also often applied in rotational boundary
layer studies. A method called “Rossby number similarity” has been devel-
oped for describing geostrophic wind drag in the neutrally stratified atmo-
sphere (e.g., Blackadar and Tennekes, 1968), in which the scales for stress,
velocity, and vertical displacement are 42, u., and u. /f, respectively. We used
this nondimensionalization to compare mean flow and turbulence data
from the 1972 AIDJEX with atmospheric boundary layer models quite
successfully (McPhee and Smith, 1976), even though the actual length scales
of the two boundary layers differ by a factor of about 30.

The planetary depth scale of Rossby similarity, u. /f, and the velocity scale
u. apply only with neutral stratification. When there is positive or negative
surface buoyancy flux, the depth scale contracts or expands, with opposing
changes in the velocity scale. Compare a case with very rapid melting (analo-
gous to strong radiational cooling in the atmosphere) to one with similar
surface stress but little or no buoyancy. In the former, stabilizing buoyancy
flux at the surface decreases the vertical exchange scale, so that mixing of
heat, salt, and momentum is confined to a thinner layer. The mixed layer
shoals, and since momentum is trapped near the surface, currents (including
ice velocity) increase. In earlier work (McPhee, 1981, 1983), I proposed a
generalization of Rossby similarity for turbulent stress and scalar flux, which
includes buoyancy effects and is outlined as follows.

Define the nondimensional variables { = z/H and T'= T/Usglieg, where H
is a characteristic length scale for the RBL and, as before, il is the vector
scale for turbulent stress. The nondimensional, steady-state version of Eq.
6.21)is

iU=aT/9¢ (6.42)
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where U is nondimensional velocity,

U={T.o : % (6.43)
First-order closure in nondimensional variables is
T=K.30/8¢ (6.44)
where
K.=K/fH? (6.45)

so that differentiation of Eq. (6.42) leads to a second-order, ordinary differ-
ential equation for turbulent stress:

(/KT = d*Tyd? (6.46)

To find the depth scale H we consider a combination of the maximum
exchange scales given by Egs. (6.36) for the neutral RBL and (6.41) for the
highly stable RBL. A simple function which satisfies the two limits is

Am = Entiaoh?/f (6.47)
where
Enlieg 1 )_1/2
=14+ — .
n ( + 7RI (6.48)
The nondimensional eddy viscosity is
K.= kunoj,m/sz = ka (6.49)

in which the last equality comes from the stipulation that the nondimen-
sional eddy viscosity is the same for all solutions, including neutral. Thus

H= st f (6.50)

Since we are considering turbulent stress, variation of K within the surface
layer is relatively unimportant (see, e.g., Fig. 1 of McPhee, 1981), and as a
first-order approximation we assume that eddy viscosity through the entire
boundary layer is constant, K. = ky . The solution of Eq. (6.46) with bound-
ary conditions 7(0) = 1 and T(—>) =0 s

T=e¥% (6.51)
where
0= (i/K.)\2 (6.52)

This remarkably simple expression for momentum flux in the boundary
layer contains many features found both in boundary layer data and in more
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sophisticated numerical models (see the comparison in McPhee, 1987).
With increasing depth, the complex exponential both rotates (cum sole) and
diminishes the magnitude of the horizontal stress vector. An important
consequence of the extended similarity theory is that, since profiles of mo-
mentum flux are similar for all neutral and stably stratified RBLs, it can
predict how deep turbulence will penetrate (and thus mix conserved proper-
ties) under varying conditions of surface stress and surface buoyancy flux.
We refer to this depth as the dynamic RBL depth, to distinguish it from the
mixed-layer depth (which may reflect, say, previous conditions of much
different surface forcing). For the neutral atmospheric planetary boundary
layer (PBL), estimates of the nondimensional dynamic boundary layer
depth vary from around 0.25 to 0.6. Using observations of freshening of the
upper ocean during the melt season at the AIDJEX camps, I found the
nondimensional dynamic depth to be about 0.4 (McPhee, 1986b). Using this
value, the dynamic boundary layer depth for high latitudes (f= 1.4 X
10~* s~ ') is plotted for u., ranging from 0.5 to 1.5 cm s~ ! (stress ranging from
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Figure 6.3 Perspective view of dimensional dynamic boundary layer depth, i.¢., the maximum
depth of active turbulent mixing, for melt rates ranging from 0 to 60 cm day~' and stress ranging
from 0.03 to 0.23 Pa.
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0.025 to 0.23 Pa) and ice melt rates from 0 to 60 cm day~! in Fig. 6.3. The
depth of frictional influence decreases rapidly with melt rate, especially with
small to moderate turbulent stress.

The heuristic arguments may be extended to include a pycnocline as
follows. Consider the stress profile in an idealized system comprising a
well-mixed layer with eddy viscosity K overlying a stable pycnocline, with
turbulence characterized by a much smaller eddy viscosity K, as sketched in
Fig. 6.2. To simplify matters, we ignore the buoyancy jump A b but note that
it is straightforward (but algebraically messy) to reinstate it.

We have introduced a new physical length scale: the mixed-layer depth
—z,. When the layer is thin relative to the dynamic boundary layer depth
(2, > Zayn), turbulence may be intense at the mixed-layer/pycnocline inter-
face, but its exchange scale will be substantially reduced by the density
gradient. This will affect both the current structure (and ice drift) of the
system and the rate at which denser water is entrained into the mixed layer
from below. On the other hand, if the existing mixed-layer depth is greater
than the dynamic depth and if there is positive surface buoyancy flux, a new,
shallower mixed layer will begin to form at z,,, . During the melt season, the
polar mixed layer thus progresses through a series of steps in salinity and
temperature structure as the interplay between wind and melt rate dictates
how the layer shoals or deepens (see McPhee, 1986b).

With the same RBL scales as before, the nondimensional stress profile is
obtained by matching stress and velocity (which is proportional to the deriv-
ative of stress) at the nondimensional pycnocline level {, (see McPhee,
1986b, 1988)

. 24 sinh(60) + e~ %, =
o = { - —( 0 (=¢,
T, e%0), (<,
Ao 6+ 'ok)e_scp (6.53)

2[cosh(3L,) — 7 sinh(3L,)]

where = (i/K.;)'/%, K., is the eddy viscosity in the upper part of the pycno-
cline, and 7, is nondimensional stress at (.

When the system is entraining (i.e., actively mixing at z), the key to
estimating flux is the length scale of turbulence for K.,. We assume that
stratification is always sufficient to force turbulence to scale with the local
Obukhov length

K, = ku,R.L, (6.54)
where

L,=ud,[k(b'w'), (6.55)
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and
Uegfiey = T ythegilng (6.56)

Assuming the eddy diffusivity for scalar flux is proportional to eddy

viscosity, the buoyancy flux may be written in terms of mean quantities
., b
(b'w"),=—aK,—| =aNK, 6.57)

az|,

where « is the ratio of scalar eddy diffusivity to eddy viscosity (the inverse
turbulent Prandtl number) and N the buoyancy frequency in the upper
pycnocline. Substituting into Eq. (6.54) and nondimensionalizing, we have

K _ R ST
(Uegte)? a N n?

Kep (6.58)

Combining Egs. (6.58) and (6.53) provides an implicit equation for the
one unknown, T,,, which can be solved by iteration.

The ratio a varies from unity (or possibly higher) in fully developed
turbulence to quite small values in very stable flows (see Turner, 1973,
Figure 5.13). I was able to simulate summer AIDJEX data reasonably well
with a constant value of 0.1 (McPhee, 1986b). When the mixed layer is very
shallow, « is probably larger (McPhee, 1987).

When the surface buoyancy flux is negative (freezing), the Obukhov
length is negative, and #. is larger than unity. An ad hoc extension of the
similarity model to unstable conditions allows the turbulent exchange scale
to grow with increasing 7., following Eq. (6.48), until it reaches|z,|. Unlike
situations where a large expanse of ice can overrun warm water and melt very
rapidly, freezing rates are limited by heat conduction through the ice, which
slows rapidly as ice thickness increases. We thus expect surface buoyancy
flux due to freezing to have a relatively small impact on RBL dynamics;
however, an exception may occur if an expanse of water exposed to cold
temperature is continually swept clear of newly formed ice by the wind.

Mean profiles of velocity, temperature, and salinity are obtained by inte-
grating their respective flux profiles. Nondimensional velocity, for example,
is found by integrating Eq. (6.53) through the layers shown schematically in
Fig. 6.2. Below the dynamic depth, U is zero, so in the pycnocline

U =—i3Te¥®, (< (6.59)
In the well-mixed outer (Ekman) layer
O =U,) — idl2d cosh(d) —e™¥], (<(<{  (6.60)

where — {; is the nondimensional depth of the surface layer. For the mean
velocity profile, variation of eddy viscosity in the surface layer is important,
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since much of the shear takes place in the logarithmic layer near the inter-
face. We define the surface layer depth by the level at which the distance from
the surface is equal to the limiting exchange scale A, [Eq. (47)]. For smaller
distances, the exchange scale is equal to the depth, so the nondimensional
surface layer extends to

la=—Nn (6.61)
in which the eddy viscosity is
Ka = —kC/']a (6.62)

For |{| small, nondimensional stress can be expressed by a Taylor series
expansion

T=1+4+8 (6.63)
so that

. - « [4f1

00O =0~ % f (? + 3) o, (>4 (664
4

The integrand is ill behaved as { approaches zero, so the upper limit of

integration is taken as the nondimensional surface roughness

o = —fzo/(tegn) (6.65)

and surface velocity is given by

0,= 0 + % [m (%) + 3@] (6.66)

Equation (6.66) is a generalized drag law for sea ice, which expresses the
surface velocity relative to the undisturbed geostrophic flow as a function of
the friction velocity at the interface, the buoyancy flux at the interface, the
depth of the mixed layer, and the strength of stratification below the mixed
layer.

To recapitulate, the equations for stress and velocity as a function of depth
in the steady RBL are solved by matching stress and velocity at the base of the
mixed layer to derive an implicit equation for T,, the nondimensional stress
magnitude at {,, which is solved by iteration. Velocity is obtained by inte-
grating the stress divided by eddy viscosity through three separate layers
representing the pycnocline, the mixed (Ekman) layer, and the logarithmic
surface layer. Profiles of temperature and salinity may be obtained in a
completely analogous way, except that a laminar/transition sublayer adja-
cent to the ice/ocean interface must also be considered, as discussed in
Section V1.
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The calculations are simplified if stratification can be ignored. If the
mixed layer is deep and melting or freezing is slow (a situation that pertains
to the central Arctic much of the year), then nondimensional stress is given
by Eq. (6.51) and surface velocity is

Oy=—id(1 — &)+~ ( 5"“‘“ 35,,) (6.67)

Grouping terms, we have the Rossby similarity drag law expressed in com-
plex form:

0, = uﬁ =— ([In Ro. — A] — iB) (6.68)

*0

where i, is the surface (ice) drift velocity relative to the surface geostrophic
flow, Ro. = us /fZ, is the “surface friction Rossby number,” and

[k NY o
(l In &y 3, + \/;) =22
_ |k On
Vas+ NESPE

Various effects of rotation and buoyancy on the turbulent stress and mean
velocity of the boundary layer are demonstrated in Fig. 6.4, for a fixed
interfacial kinematic stress of 1 cm? s~2 directed along the y axis, with z, =
0.06 m. For case (a) there is no stratification in the water column, the mixed
layer is at its freezing temperature, and there is no melting. Both stress and
velocity spiral clockwise downward, with velocity leading by 45° in the
neutral Ekman layer below the surface layer (which extends down about
3.7 m). At the interface, the surface current (which is ice velocity) is 13.5 cm
s~ 1, directed 23° to the right. Case (b) is like case (a) except that a pycnocline
with constant density gradient (N = 0.02 s~!) isimposed below 15 m. Stress
is confined mainly to the mixed layer. Below the surface layer, currents are
relatively uniform at right angles to the surface stress, down to the pycno-
cline, at which there is large shear in both speed and direction. Surface
velocity is slightly retarded relative to the neutral RBL and directed a few
degrees farther to the right. The level of stress at 15 m suggests that active
entrainment is occurring. Case (c) is like case (b) except that the mixed-layer
temperature is set to 3°C, which gives rise to a melt rate (see Section VI) of
about 27 cm day ™. The ice drifts about 25% faster and 6 ° farther to the right.
Note also that current structure in the mixed layer is much less “slablike,” as
buoyancy reduces the vertical scale of the RBL, in effect pushing the pycno-
cline deeper in nondimensional coordinates.

(6.69)
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Figure 6.4 Implicit-analytical model hodographs of Reynolds stress and mean current for (a)
no surface buoyancy flux (the mixed layer is at its freezing temperature), no pycnocline; (b) no
surface buoyancy, pycnocline at 15 m; (c) mixed-layer temperature set to 3°C, pycnocline at
15 m. Numbers at surface indicate surface speed in centimeters per second and boundary layer

turning angle.



310 Miles G. McPhee

IV. Some Measurements from the Under-Ice Boundary Layer

A sample of measurements from under-ice RBL studies helps illustrate some
of the concepts developed in the previous section. Figure 6.5, from the 1972
AIDJEX Pilot Study (McPhee and Smith, 1976), provides another good
example of spiral-like structure in mean currents, this time from a composite
average of 5 h of data during a particular storm. Currents are drawn relative
to flow measured by an instrument cluster 32 m below the ice/ocean inter-
face, which was near the base of the mixed layer, with the x axis aligned along
the direction of shear between the ice and the 2-m level. Note that the
integrated volume transport through the boundary layer is almost all in the y
direction, i.e., at right angles to the interfacial stress. We found that this
integral implied a stress of about 0.29 Pa [see Eq. (6.23)], whereas direct
turbulence measurements indicated local turbulent stress at the interface to
be about 0.1 Pa, and argued that the difference was due mainly to pressure
gradients associated with under-ice topography, i.e., form drag on ridge
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Figure 6.5 Mean current hodograph and profiles relative to 32 m below the ice during a storm
at AIDJEX 72 Pilot Study. In a frame of reference drifting with the ice, the relative current at
32 m was within 2 cm s~! of the apparent bottom velocity. Reprinted with permission from
McPhee (1986b); copyright by Plenum Press.
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keels. Profiles of the diagonal components of the Reynolds stress tensor,
scaled by u. and u. /f, where u. was estimated from turbulent stress measure-
ments, are shown in Fig. 6.6. The sum of the three components is twice the
turbulent kinetic energy per unit mass. The measurements are shown with
results from two numerical models of the neutrally stable atmospheric
boundary layer: the second-order closure model of Wyngaard ef al. (1974)
and averaged results from the LES model of Deardorff (1972).

Similar measurements in the marginal ice zone of the Greenland Sea are
shown in Fig. 6.7, from McPhee et al. (1987). Here, velocity vectors averaged
over 3.5 days are drawn relative to drifting ice (measurement reference
frame), along with the average results of a time-dependent, numerical model
based on the scaling concepts introduced in Section III. During this time, the
mixed-layer depth varied between 10 and 20 m. Observed and modeled
velocity hodographs differ in some details, but their overall similarity is
striking. The relatively shallow pycnocline exerts strong influence on the
mean velocity structure, as can be seen by comparison with Fig. 6.5, for
which the mixed-layer depth was 30-35 m.

Figure 6.8 shows the measured and modeled Reynolds stress vectors for
the same period. Contrary to the turbulence model, measured turbulent

=i /,2
-u'u'/ug

NEUTRAL CASE — — — — NEUTRAL CASE
FROM WYNGAARD ETAL. FROM DEARDORFF (1972)

Figure 6.6 Profiles of the diagonal components of Reynolds stress at eight depths ranging from
2 to 32 m in the boundary layer for the same period as Fig. 6.5, nondimensionalized by u. as
determined from near-surface stress measurements. Curves are corresponding predictions from
the atmospheric models of Wyngaard et al. (1974) and Deardorff (1972). Reprinted with
permission from McPhee and Smith (1976); copyright by the American Meteorogical Society.
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Figure 6.7 (a) Average current hodograph from an 84-h storm during MIZEX 84 in the
Greenland Sea. North is up. Numbers indicate depth from the ice underside, with the vector
labeled ““2” from a cluster about 100 m away from the main turbulence mast. Vectors labeled
“30” and “B” are, respectively, the average 30-m velocity from a profiling system and the
apparent bottom velocity from satellite navigation. (b) Averaged results from a time-dependent
numerical model forced by observed wind stress, transformed into the drifting reference frame.
Reprinted from McPhee et al. (1987); copyright by the American Geophysical Union.

stress decreases as the ice/ocean interface is approached. We argued that this
resulted from the nonuniform nature of roughness elements on the ice
underside, with larger elements contributing to the Reynolds stress observed
in the middle and outer regions of the mixed layer but not to the stress
measured near the interface under smooth ice. As discussed in the next
section, resolving how total drag is partitioned into skin friction, overall
turbulent stress, and form drag warrants additional research.

A surprisingly different RBL is shown in Fig. 6.9, from data taken with a
frame of equally spaced turbulence clusters under ice near the center of the
AIWEX camp in April 1985. The upper cluster on the frame was positioned
2 mbelow the interface, and data were gathered for about 2 h during a steady
drift. The velocity hodograph on the left shows near-surface currents roughly
comparable to the MIZEX measurements of Fig. 6.7, but stress magnitudes
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Figure 6.8 Asin Fig. 6.7, except (a) measured Reynolds stress and (b) modeled turbulent stress.
Reprinted McPhee et al. (1987); copyright by the American Geophysical Union.

(right-hand hodograph) are at least five times smaller than at the MIZEX site
(Fig. 6.8). The mixed layer was 20-25 m thick and very close to neutrally
stable at AIWEX; so I estimated the interfacial friction velocity u., by fitting
(in a least root-mean-square sense) the measured stress at each level, nondi-
mensionalized by interfacial stress, to the simple exponential given by Eq.
(6.51). The stress hodograph drawn is the result, with surface stress aligned
with the relative current at 2 m. Despite the short averaging time and small
magnitudes (of order 0.01-Pa actual stress), the measurements fit the simple
exponential quite well.

The stress at the interface is so small that a Reynolds number based on uu,
and z, [derived from Eq. (6.35)] fell within a range for which the surface is
considered hydraulically smooth (see Hinze, 1975, Chapter 7). Under these
conditions, the RBL no longer depends on surface roughness, and we may
replace the logarithmic part of the surface layer velocity in Eq. (6.66) (with
7. = 1) by Hinze’s empirical result, namely

U, = 2.44 In (ueg|zg|/v) + 4.9 (6.70)

where v is kinematic molecular viscosity and

zg =~ Usn/f (6.71)



314 Miles G. McPhee

/,‘1 Ice

-

/

—~——
\ ,/\7.3
5 cm/s | — 8.2 (cmss)@ \

Figure 6.9 Hodographs of mean current and stress measured relative to the ice during AIWEX
85 in the Beaufort Sea. The theoretical curves are from a simple exponential stress model fitted
to the observations, with velocity obtained by assuming the surface to be hydraulically smooth.

The model velocity hodograph constructed in Fig. 6.9 thus depends only
on Uy, and the measurements are remarkably close to an ideal, hydraulically
smooth, rotating boundary layer.

Finally, direct measurements of vertical turbulent heat flux ((w’7”)) in
the RBL are shown in Fig. 6.10, from McPhee et al. (1987). During the
MIZEX 84 drift, the ice crossed an abrupt mixed-layer temperature front,
after which bottom melting increased rapidly. Figure 6.10 shows the average
heat flux from all turbulence clusters within the mixed layer, along with a
melt rate derived from once-daily measurements of bottom elevation at
several sites surrounding the turbulence experiment. The heat flux and melt
rate scales are equivalent if we assume that all of the upward heat flux melts
ice, where the latent heat of melting is adjusted for brine volume (see Section
VI). The dashed curve marked by crosses is from a simple model based on
mixed-layer temperature and salinity and u.,, described in Section VI.

V. Drag Coefficients and Under-Ice Roughness

Much of the previous discussion of RBL dynamics may seem esoteric to a
reader who simply wants to know: what is the drag of the ocean on drifting
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Figure 6.10 Vertical turbulent heat flux in watts per square meter during the MIZEX 84 drift of
Fig. 6.7. Solid curve marked “+” is the average of all (w’T”) determinations in the mixed layer;
dashed curve marked “X” is from the heat flux model described in Section VI; solid bars with
diamonds are daily average bottom melt rates in centimeters per day, from ablation stakes
surrounding the turbulence mast. Reprinted from McPhee et al. (1987); copyright by the
American Geophysical Union.

sea ice? But, like the proverbial one-armed economist, an oceanographer
who answers quickly risks oversimplifying a complex set of problems. First,
there are a number of differing meanings and concepts concerning under-ice
drag, so precise definition is difficult; and second, there are factors such as
buoyancy and internal wave drag that, for ice with given roughness and
velocity, can drastically modify momentum flux to the ocean. There have
been several determinations of interfacial stress, drag coefficients, and
under-ice surface roughness for drifting sea ice. In this section, the methods
and results are discussed and compared in a common context.

Since actual shear stress on the ice undersurface is rarely, if ever, measured
directly, its value is inferred from other measurements. We thus require
some ‘“model” of how measurable quantities are related to the actual stress,
and often uncertainty in our theoretical methods is at least as important as
the accuracy or statistical significance of our measurements. Several
methods for determining ice/ocean stress have been used, including (1)
profiles of mean current in the “logarithmic” layer, (2) direct measurements
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of turbulent (Reynolds) stress, (3) measurements of total transport in the
RBL (momentum integral method); (4) combining turbulent stress mea-
surements with mean velocity measurements; and (5) inferring stress indi-
rectly as a residual in the balance of forces acting on the ice.

Before describing the methods, it is pertinent to discuss what comprises
“interfacial stress.” Three potentially major contributors to the total mo-
mentum flux between ice and ocean have been identified from observations:
“skin friction” arising from turbulence associated with shear in the bound-
ary layer, “form drag” on objects (like pressure ridge keels) that protrude
well beyond the general roughness elements characteristic of the under-ice
surface, and momentum flux out of the ice/RBL system in the internal wave
field. The last, discussed in Section VII, is important only when there is
strong stratification near the surface, which is rare except in marginal ice
zones. Of the five methods mentioned above, only the last includes a mea-
sure of internal-wave stress.

The distinction between skin friction and form drag is meaningful under
conditions which seem to typify much of the perennial Arcticice pack, where
reasonably flat and uniform floes are bounded by pressure ridges separated
by distances which are large compared with the size of the ridges. Using the
analogy implied by the planetary (u.,/f) length scaling, we may view flow in
the RBL under pack ice with pressure ridge keels every few hundred meters
as a scale model of mid-latitude atmospheric flow over fairly uniform terrain
punctuated every few kilometers by low hills. In the latter, the flow will be
disturbed in the vicinity of the hills and a net pressure on each hill will add to
the downward momentum flux, increasing the total drag on the atmosphere.
However, if we measured turbulent stress in the surface layer somewhere on
the flat between hills, we would not detect the form drag stress. A similar
situation often applies to sea ice, but when the larger roughness features are
closely spaced, disturbances from each blend with the others and the distinc-
tion between turbulent skin friction and form drag blurs. Measurements
near the interface may then show less of the actual turbulent flux than is
apparent farther into the boundary layer at the same location. We suggested
(McPhee et al., 1987) that this was the reason for the increase in stress
observed in the first few meters under the MIZEX floe.

A. Surface Layer Profile Measurements

Surface layer profile techniques follow directly from the law of the wall, Eq.
(6.35). If current speed relative to the ice is measured at two levels, z, and z,,
in the surface layer, stress is calculated from

Uy = k(u, — u,)/In(z,/z,) (6.72)
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and surface roughness is

Zp= exp< U lnlzlzl : Zl 1n|22|) (6.73)
1

The drag coefficient applicable to relative current measured at a particu-
lar level in the flow, z = A, is related to surface roughness by

¢ = (% In '—”')—2 (6.74)

2p

Untersteiner and Badgley (1965), Johannessen (1970), Ling and Unter-
steiner (1974), and Pease et al. (1983) cite either drag coeflicients or surface
roughness lengths calculated by the “log profile” method. Although easily
applied, the technique has several drawbacks. First, the disparity in scales
makes the surface layer in the ocean roughly 30 times thinner than the
atmospheric surface layer, so the assumption of constant stress out to realis-
tic measurement levels is suspect. It turns out that this is not as restrictive as it
might seem, since the relative speed profile remains approximately logarith-
mic for some distance past the surface layer. On the other hand, since
measurements are made at the edge or beyond the surface layer, stability
effects need to be considered carefully. Unless properly accounted for, a melt
rate as low as a couple of centimeters per day can have a significant impact on
stress estimated from the mean profile out to 5 m. Also, since the method is
confined to measurements in or near the surface layer, it fails to include any
estimate of form drag effects.

B. Direct Measurements of Reynolds Stress

With the proper equipment, we can measure turbulent fluctuations in the
flow under the ice and, from a statistical treatment, estimate the momentum
flux at a given level directly. Interfacial stress is inferred from the Reynolds
stress. Examples of Reynolds stress measurements are given by Smith
(1974), McPhee and Smith (1976), Langleben (1980, 1982), McPhee e al.
(1987), and McPhee (1989).

Langleben used a three-axis ultrasonic current meter to measure mean
and turbulent velocities 1 m below the ice at AIDJEX station Caribou,
located on a floe in the multiyear pack over the Canadian basin. He later
measured stress 1| m below undeformed first-year ice in Barrow Strait,
Northwest Territories. In both cases, he found quite small values for the drag
coefficients (in fact, the measurements in Barrow Strait imply a hydrauli-
cally smooth surface), which again pose the surface layer dilemma: if the
measurements are close enough to be considered within the constant-stress
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layer, they are probably too close to pick up turbulence generated by larger
but sparser roughness elements (see, e.g., the MIZEX stress hodograph in
Fig. 6.8).

C. Momentum Integral Methods

A distinctly different approach uses Eq. (6.23) to estimate the total stress
including form drag by integrating the volume transport through the bound-
ary layer from a level at which stress is assumed to be zero. For currents
averaged over an inertial cycle, the time derivative is often negligible. While
the method in principle includes the contribution from keel form drag
(Hunkins, 1975), it is valid only if averaged over an area that encompasses
features responsible for the form drag. In other words, profiles from a single
location may be unduly influenced by local under-ice topography. I cited an
example from AIDJEX 72 (McPhee, 1974) in which surface stress calculated
from simultaneous current meter profiles, spaced about 110 m apart, varied
by a factor of 24, despite similar surface layer behavior and roughly the same
amount of RBL turning. The difference came in the shape of the cross-stress
profiles and in the choice of reference level.

D. Combination Methods

If stress and velocity are measured at more than one level in the RBL, the
added information may be used to refine the estimate of interfacial stress.
McPhee and Smith (1976) showed that stress in the near-surface RBL mea-
sured during AIDJEX 72 was affected by a local pressure gradient most likely
associated with topographic relief. By combining Reynolds stress measure-
ments and the momentum integral of mean velocity between instrument
levels, we were able to estimate the magnitude of the pressure gradient term
in the momentum equation and adjust our surface stress estimate accord-
ingly.

A variant on this scheme is to formulate a model of RBL stress [such as
Eq. (6.51)] and then determine u., by fitting observations so as to minimize
rms errors, as demonstrated earlier in analyzing the “smooth” RBL of
Fig. 6.9.

E. The Force Balance Method

The last method, which can in principle be applied without any measure-
ments from the oceanic RBL at all, consists of deducing the average under-
ice stress as a residual in the ice force balance. Expressed in its complex,
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steady-state form, the balance is
iphi (B — ) =1, — T + F, (6.75)

where p;, h;, and ; are, respectively, ice density, thickness, and velocity; 7, is
tangential air stress; and F; is the sum of forces internal to the ice, usually
expressed as the gradient of internal ice stress. The term involving the geo-
strophic velocity #, comes from the slope of the sea surface, via Eq. (6.18).
The internal force term is very difficult to monitor directly, so the best way of
applying the technique is to identify situations in which the internal stress
must be small, e.g., when ice is thin or divergent, or when inertial oscillation
is prominent. Sea surface tilt is also often difficult to measure directly,
especially in coastal areas or near frontal regions, so in those cases an accu-
rate measure of relative current just below the RBL is necessary.

Using the force balance method to amass statistics on interfacial stress and
relative ice drift for the four AIDJEX stations during the melt season of 1975
(when internal ice forces were small), I found (McPhee, 1979) that the
stress/velocity relation was like that predicted by Rossby similarity theory.
Of the various drag laws proposed in the literature, only those that incorpo-
rated u. /f scaling agreed with the AIDJEX free drift results (McPhee, 1982).
Using a 10-m wind drag coefficient of 0.0027, based on integration of pilot
balloon profiles at the AIDJEX sites, and estimating the average ice thick-
ness to be 2.7 m, I found that the surface roughness appropriate for Rossby
similarity [see Eq. (6.68)] was about 10 cm, which contrasts sharply with the
value of about 0.2 cm inferred from the drag coefficient reported for AID-
JEX station Caribou by Langleben (1980), based on direct stress measure-
ments 1 m below the ice.

Pease et al. (1983) used an interesting variation on the force balance
theme to estimate both air and water drag coefficients directly from mea-
sured surface wind, measured current in the under-ice surface layer, ice
velocity, and estimates of geostrophic current. They obtained results similar
to those from a current profile analysis done at the same site. Expressed in
complex notation, the method is as follows. Let @, = #; — #l, again be the ice
velocity relative to geostrophic flow, and use quadratic formulas for air and
water stress. If F; is negligible, Eq. (6.75) becomes

lplhlfﬁ() = pacaunﬁa - pcwuwﬁw (676)

where i, and i, are wind and current relative to the drifting ice. Given
accurate measurement of all the velocities and ice thickness, the real and
imaginary components of Eq. (6.76) determine the two unknowns ¢, and c,,.
As Pease et al. (1983) point out, if the term on the left side of Eq. (6.76) is
small, the force balance is mainly between the two terms on the right, which
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are nearly collinear. In this situation, small errors in 4; or i, unduly influence
the calculated magnitudes of ¢, and c,,, but even so, the method provides a
robust estimate of the ratio of the two drag coefficients.

Intuitively, estimates of drag coefficients improve as the Coriolis turning
increases, and it is natural to consider the method in the context of the entire
boundary layer. It is often convenient to express free drift as a complex ratio
of ice velocity (relative to geostrophic flow) to surface wind:

fiy/l, = re~% 6.77)
where 6 is the rightward deflection angle with respect to surface wind direc-
tion. For the AIDJEX free-drift period (summer 1975), the average ratio for
all camps was 0.020 (2%!) with about 47° deflection (McPhee, 1980). During
this time the average drift speed (corrected for small geostrophic currents)
wasabout 0.13 ms™!, and from current measurements near the ice we found
that the average turning angle in the RBL was about 24°. With this informa-
tion, it is possible to estimate the surface wind drag coefficient and the
geostrophic water drag coefficient, ¢,, as a function of ice thickness. We

express the wind and water stress in terms of #,, so that the steady force
balance is

ipihy fily = (paca/1?) Ugllge™ — pegu tige” (6.78)
where f is the RBL turning angle. We again decompose the complex equa-

tion into components, with the real part expressing the ratio of water and air
drag coeflicients:

Cy/Ca = (palpr?) cos O/cos B (6.79)
and the imaginary part furnishing the magnitude,
= (r2p; fh;/p,iio) (sin 6 — cos 6 tan B)~ (6.80)

Equation (6.80) implies that for given ice speed, wind drift ratio, and RBL
turning (all of which can be readily measured with remote buoys), the drag
coefficients are proportional to ice thickness. Unfortunately, mean ice
thickness is often quite difficult to estimate, especially over an area large
enough to represent the regional force balance. If mean ice thickness in the
AIDJEX region is assumed to have been between 3 and 4 m, the corre-
sponding 10-m wind drag coeflicient ranges between 0.0021 and 0.0029,
with the geostrophic water drag ranging from 0.0049 to 0.0068. These values
coincide with the range of independent estimates of air and water drag made
for the AIDJEX region. If one or the other of the drag coefficients is known
with some confidence, the computation may be inverted to estimate mean
ice thickness.
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F. A Comparison of Roughness Lengths

Table 6.1 lists a number of independent determinations of under-ice drag,
here expressed in terms of the surface roughness length z,. A number of the
cited works report drag coefficients, either referenced to relative current
velocity at a particular level or as a “geostrophic” drag. These have been
converted to equivalent z, values using Eq. (6.74) where a particular level is
given [2 m was taken as the reference level for Smith’s (1974) drag coeffi-

Table 6.1 Representative Estimates of Undersurface Roughness Length®

Source Location Method  Reported zo (cm)

Ling and Untersteiner (1974)  Beaufort Sea (Arlis 2) 1 2 0.82-1.9
(after Untersteiner and
Badgley, 1965)

Johannessen (1970) Gulf of St. Lawrence 1 2y 32
1 2o 9.4
Gulf of St. Lawrence 1 Zy 30
North Pole 1 2y 0.2
Smith (1974) Beaufort Sea (Camp 2 Cy 0.13-0.70
200)
McPhee (1974) Canada Basin 3 c 1.9
(AIDJEX 72)
Hunkins (1975) Canada Basin 3 Stress, u, 1.1
(AIDJEX 72)
McPhee and Smith (1976) Canada Basin 4 Ro. 0.08
(AIDJEX 72)
McPhee (1979) Canada Basin S Zy 10
(AIDJEX 75)
Langleben (1980) Canada Basin 2 c, 0.2
(AIDJEX 75)
Langleben (1982) Barrow Strait NWT 2 ¢ 0.0017
(fast ice)
Pease et al. (1983) Bering Sea 1 Z 8.0
Bering Sea 5 Cia 5.7-74
McPhee (1989) Greenland Sea 4 29 5.5-17.7
(MIZEX)
Beaufort (AIWEX) 4 2z Smooth
Beaufort 4 2z 0.45-0.63
(PRUDEX)
Martinson and Wamser Weddell Sea 5 [ 0.06
(1990) (WWSP-86)

2 Method refers to technique used for determining stress: (1) log profile, (2) direct Reynolds stress, (3)
momentum integral, (4) combination of direct stress and mean current measurements, or (5) force balance
residual. Conversion of drag coefficients to roughness length is described in the text.
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cients], or using the rear component of Eq. (6.68) for studies including the
entire RBL.

It is difficult to generalize from the results of Table 6.1. The surface layer
and direct turbulence measurements do not include the effect of form drag
on large pressure ridge keels, yet Johannessen’s (1970) second case and my
MIZEX example produce very large roughness lengths. The comparison
between AIDJEX 72 momentum integral determinations [Hunkins (1975),
1.1 cm; McPhee (1974), 1.9 cm] and the AIDJEX 1975 force balance
(10 cm) is interesting because they come from roughly the same geographic
region during different years. My force balance estimate is based on a fairly
large wind drag coefficient (0.0027) but is consistent with the range of drag
coefficients found in the previous subsection for mean ice thickness ranging
from 3 to 4 m. In principle, both the momentum integral and force balance
methods should account for most of the form drag effect, so the observed
increase is probably indicative of a significant increase in ice roughness. It is
also interesting that the ‘“marginal ice zone” cases (the second Gulf of St.
Lawrence example and the Bering and Greenland Sea examples) are uni-
formly large. This may be due to processes that tend to break up floes in some
more or less similar fashion.

The range of roughness lengths found in Table 6.1 emphasizes the need
for more research, both theoretical and observational, on the partition of
total drag between skin friction and form drag and on what routine observa-
tions can be made to estimate regional values of under-ice roughness.

VI. Heat and Mass Flux at the Ice/Ocean Interface

In the previous sections, momentum flux between the ice and underlying
RBL was described in detail. The question asked was essentially: given stress
at the interface, what is the velocity of the ice relative to undisturbed water
below the boundary layer and how is momentum distributed in the RBL?
The inverse question — given relative velocity, what is stress at the ice/ocean
interface and how is it distributed? —is just as relevant and is answered in
much the same way.

To understand the system fully, we must ask similar questions about
fluxes of temperature and salinity and other scalar properties. If we specify
the heat and salt flux at the interface (essentially, the ice growth rate), then we
should be able to use our knowledge of the dynamics of the RBL to predict
changes in its mean temperature and salinity structure. In many practical
problems, however, the question is posed in its inverse form: given surface
momentum flux and temperature and salinity of the RBL, what is the heat
flux (melt rate) at the interface? Stated another way: if an expanse of seaice is
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drifting over a mixed layer that is above freezing, how long will the ice last
and how fast will it cool the mixed layer? It appears from recent measure-
ments that the answer is highly dependent on what occurs in a thin layer near
the interface and thus has no direct analog in the momentum flux/mean
velocity question.

An idealized view of the heat and salt balances at the ice/ocean interface is
given in Fig. 6.11, adapted from Mellor et al. (1986). We draw an infinitesi-
mal control volume which follows the migrating interface, either up or down
according to whether the ice is melting or freezing. From isostasy

w=—(pi/p) d=w,+ W, (6.81)

where d is the ice growth rate and p, is ice density. The interface vertical
velocity is the sum of w,, which is due to bottom melting, and w;, the
“percolation” velocity due to water that migrates to the interface from melt-
ing in the interior or at the surface of the ice column. The latter is often the

Heat Salt

= w_+w,
w wow]

Phase
change

<II> N w4
wTo <u:S>o

Figure 6.11 Schematic of an infinitesimal control volume following the ice undersurface with
vertical velocity w. The heat balance is dominated by conduction through the ice ¢; heat flux
from the ocean, (w’T”),; and the phase change associated with the bottom melt velocity, wy. w,
is a “percolation” velocity from melt at the surface and within the ice. The salt budget is a
balance between advection and turbulent flux.
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major source of buoyancy when ice is compact, and the mixed-layer temper-
ature remains near freezing. We treat it here as uniformly distributed, al-
though it probably occurs in separated drainage channels and at floe bounda-
ries. High melt rates occur when ice overruns warm water (Josberger, 1987);
then w may come almost entirely from bottom melting.

The salt balance is shown on the right of Fig. 6.11. If w is positive (melt-
ing), fluid with salinity S; advects into the control volume from above, much
saltier fluid with salinity S, advects out, and the imbalance is compensated
by the upward turbulent flux from the fully turbulent part of the boundary
layer

(W'S")o=w(S, — S) (6.82)

The heat balance is dominated by (a) conduction of heat through the ice,
(b) the phase change if bottom freezing or melting occurs, and (c) turbulent
heat flux from the ocean. Since sea ice is a mixture of pure ice and brine, its
effective latent heat of fusion varies with brine volume, which is a function of
temperature and salinity of the ice (Maykut, 1985). For ice that is near the
freezing point of typical seawater, this relation is approximately

Lg= L1 —0.03S) (6.83)

where L, is the latent heat of pure ice. Neglecting small changes in enthalpy
associated with temperature changes in the control volume, the first-law heat
balance is

(WT")o=woQL+¢ (6.84)
where
._ ke dT
q= pc, aﬂm (6.85)

is the heat conduction through the ice (k is the thermal conductivity and c,
the specific heat of seawater) and Q, is the latent heat of fusion (adjusted for
brine volume) divided by specific heat, with units of temperature. Water at
the immediate interface is at its freezing temperature, related to salinity at
the interface by the linear approximation to Eq. (6.32): Ty = —mS,.

If we assume that the percolation velocity is known (or can be calculated
with a model of ice thermodynamics), the fundamental problem of heat and
mass transfer at the ice/ocean interface is to relate the bottom ablation rate to
mean properties at some level in the fluid. This is a formidable theoretical
problem and has been addressed (with widely varying results) by, among
others, Josberger (1983), Ikeda (1986), and Mellor et al. (1986). McPhee et
al. (1987) developed a framework for comparing the various approaches,
which is briefly recapped here.
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Expressing flux as an exchange coefficient times the mean gradient, with
Eqs. (6.84) and (6.85), and then integrating from some level z to the surface,
the nondimensional changes in temperature and salinity from z to the sur-
face are given by

Ul T(2) = To] _ =f%wﬁ
(WoQL + §) d : Xn (€50
and
UnofS@) =Sl _ g, _ [ o 2" (6.87)

(Wo+ WS, —S) . K

where % , and ¥ ¢ are heat and salt diffusivities, including both turbulent and
molecular effects, and u., is the magnitude of the friction velocity at the
interface. Using the freezing-line approximation, Egs. (6.53) and (6.54) may
be combined to obtain a quadratic equation for S

mS3+ [T+ (1 +¢))c; — mS)So — (T4 + ¢,5) =0 (6.88)
where
¢ = Psw, /U, €, = P70 /Ps
Ty =T(2) — (Pr/us) ¢ (6.89)
S =802+ ¢S

and thus for the bottom ablation velocity

W, =Ma - W;
° Ds(So — S) s '

McPhee et al. (1987) reviewed several approaches to specifying the non-
dimensional functions ®; and ®g and found, using heat flux, turbulent
stress, and mean T and S measured at 2 m depth during MIZEX 84, that
molecular effects dominate the change in 7"and S across the boundary layer.
We suggested that the nondimensional functions can be expressed as a sum
of a contribution across the transition/laminar sublayer plus a much smaller
contribution across the fully turbulent part of the boundary layer. Standard
engineering practice (e.g., Incropera and DeWitt, 1985) and laboratory stud-
ies of Yaglom and Kader (1974) indicate an appropriate form of the nondi-
mensional functions for the sublayer region to be

1/2 2/3
Br=b (M) (—"—) + O, (6.91)
v aT's

(6.90)

where v, a, and ag are, respectively, molecular kinematic viscosity, heat
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diffusivity, and salt diffusivity. Representative values (Mellor ef al., 1986) in
square meters per second are v= 1.8 X 107%, a;= 1.3 X 1077, and ax=
7.4 X 10719, For the MIZEX data, McPhee et al. (1987) found the constant
in Eq. (6.91) to be b = 1.6, about half the laboratory value.

Estimating the turbulent contribution to the nondimensional flux pro-
files, @, in Eq. (6.91), requires a model for turbulent exchange. A problem
often encountered in sea ice studies, especially near the ice margins, is to
estimate the bottom melt rate of ice drifting in water above the freezing
temperature as a function of interfacial stress, mixed-layer temperature, and
mixed-layer salinity. This can be accomplished with a straightforward ex-
tension of the similarity concepts discussed in Section III,C. We ignore the
pycnocline and assume the Reynolds analogy in the mixed layer. Following
closely the derivation of the nondimensional velocity profile in Section III,C
(see also McPhee et al., 1987), we have

_ T — T(2p) _ S — S(20)
W W T Yol (WS Yo/ ting

=_l._ b al &fcoe_ac.
kéNL" A+ ). T

a=Re(d) = 1/V2k&y (6.93)

If the integrals are approximated by using a Taylor series expansion for
the exponential, and with |{y| > {,, the result is

_ 2 I3 e En? ¢
Dyury, = (\/ P \/%) T (ln —-—-""’fz’:" =1 \/%) (6.94)

where the first term in parentheses is the contribution of the outer layer and
the second is from the fully turbulent part of the surface layer. For typical
values under sea ice (s = 0.01 m s~', z, = 0.05 m) and with n. =1, O,
evaluates to

(6.92)

where

@, = 9.6 + 10.1 =19.7 (6.95)

with surface and outer layers contributing about equally. By contrast, the
nondimensional changes across the laminar/transition sublayer, given by
the first term on the right of Eq. (6.91) with b = 1.6, are 153 and 4823 for
temperature and salinity, respectively. In other words, the fully turbulent
part of the boundary layer contributes less than 12% of the total temperature
change and less than 0.5% of the salinity change. Thus a “mixed” layer can
exist, even with high surface fluxes, because most of the change in scalar
properties occurs across a very thin layer adjacent to the surface.
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Steps in using the heat and mass flux model are as follows: (1) specify ice
characteristics (w;, 4, S;) and forcing environment (usg, Ty, Sip), (2) evaluate
@, and P using Eq. (6.91) with an initial estimate for 7., (3) solve the
quadratic Eq. (6.88) for S, and use this to obtain w,, and (4) calculate the
buoyancy flux from total melt velocity for a refined estimate of 7. and iterate
if the change in 7. is significant. This procedure was used to calculate the melt
rate of 27 cm day~' in Fig. 6.4c for sy =1 cm s~!, T, = 3°C, and S, =
32 ppt (S; =4 ppt, w; = ¢ =0), demonstrating the effect of high surface
buoyancy flux on the stress and velocity profiles.

The MIZEX heat and mass balance studies showed that even with highly
turbulent flow near the hydraulically rough ice undersurface, the rate of heat
and mass transfer is controlled by molecular processes in a thin layer near the
immediate interface. In practical terms, this means that ice can last much
longer in water several degrees above freezing than was anticipated using
models which neglected the sublayer (Josberger, 1983; Ikeda, 1986). At the
immediate ice edge, there is some evidence (Josberger, 1987) that transfer
rates are somewhat higher than implied by the “universal” functions of Eq.
(6.91); a possible source of higher heat flux there may be enhanced stirring by
surface gravity waves.

Figure 6.10 shows results predicted using the model developed in McPhee
et al. (1987) for drift in above-freezing water compared with actual measure-
ments of heat flux and bottom melt (see also Fig. 18 of Morison et al., 1987).

VILI. Internal Wave Drag

Because of the restoring force exerted by gravity, vertical displacement in a
stratified fluid is often accompanied by internal waves, which, unlike turbu-
lent processes, are capable of transporting momentum and energy away
from the ice/upper-ocean system. In contrast to the open ocean, the ice-cov-
ered RBL often has a ready source for internal waves in the form of pressure
ridge keels drifting at speeds comparable to internal-wave phase speeds. It
has long been speculated that drag from internal waves could be a significant
factor in the ice force balance. However, the Arctic Ocean is also noted for
the low intensity of its deep internal-wave field (Morison, 1986; Levine et al.,
1985); thus we can surmise that, overall, the ice cover probably diminishes
rather than enhances internal wave generation.

By extrapolating Ekman’s (1906) laboratory studies of “dead-water” drag
on a model ship hull to pressure ridge keels, Hunkins (1974) found that for
normal ice velocities and 35 -50-m-thick mixed layers, internal-wave drag
implied by the laboratory model results would be small. Rigby (1974) also
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examined internal-wave generation by pressure ridge keels and concluded
that the effect was small for typical central Arctic conditions. On the other
hand, a set of modern tow tank experiments (Hachmeister and Rigby, 1980;
Muench and Hachmeister, 1984) showed that for key parameters typical of
the marginal ice zone, internal-wave drag on their model pressure ridges was
as great as form drag.

During the last week of the 1984 summer MIZEX project in the Green-
land Sea, the behavior of the ice/upper ocean system suggested that internal
waves played an important role in RBL dynamics. Figure 6.12a, from Mori-
son et al. (1987), shows wind forcing, relative ice speed, and drag coefficient
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Figure 6.12 (a) Friction velocity determined from wind stress; ice speed relative to 30-m depth;
and their ratio, the square root of drag coefficient (+), plotted against time for the entire MIZEX
84 drift in the Greenland Sea. (b) Forcing temperature 6. (heat flux divided by w.); elevation of
mixed-layer temperature above freezing, AT,,; and their ratio, the heat exchange coefficient
(+). Reprinted from Morison et al. (1987); copyright by the American Geophysical Union.
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for the entire drift, where w. is derived from the wind stress modified by
Coriolis acceleration of the ice. Figure 6.12b shows thermal forcing, mixed-
layer temperature, and heat transfer coefficient for the entire MIZEX 84
drift. The heat transfer scale 6. is kinematic heat flux (proportional to bot-
tom melt rate) divided by «., and ¢, is 0. divided by mixed-layer tempera-
ture. During the last few days, ice was melting in water well above freezing,
with stable stratification almost to the interface— conditions for which we
would expect strong buoyancy effects. Nevertheless, the drag coeflicient was
larger than at any other time, while the heat transfer coefficient was smaller.
If turbulence had been the only transfer mechanism, buoyancy should have
acted to decrease both coefficients, with the largest effect on momentum.
Morison et al. (1987) argued that momentum flux into the internal-wave
field could account for the otherwise peculiar behavior and showed that
internal waves with the proper characteristics for significant downward radi-
ation of momentum and energy were present in data from instrument clus-
ters in the upper part of the RBL.

For most practical problems, the length and time scales of internal waves
that provide much vertical momentum flux are too small to resolve individ-
ually. A parametrization of internal-wave drag on sea ice has been suggested
by McPhee and Kantha (1989), based on a two-layer, inviscid theory similar
to that described by Gill (1982). Without repeating the complete derivation,
our results for one Fourier component of under-ice waviness, characterized
by wave number k (which should not be confused with von Karman’s con-
stant) and amplitude 4,, expressed the additional drag from internal-wave
generation as the product of two factors. The first is the drag that would be
encountered if the pycnocline density gradient, characterized by buoyancy
frequency N, extended to the ice/ocean interface:

Cwa = k3G [(KZ/K3) — 112 (6.96)

where k.= N/u, is a critical wave number above which the solutions are
evanescent and k, is the wave number component in the direction of ice
motion. This is multiplied by an attenuation factor which takes into account
the mixed-layer depth H and the strength of the buoyancy jump at the base of
the mixed layer, Ab:

r= (sinhz(kH) {[coth (k) — K40 ]2 + 1})_' (6.97)

wkil  ulk;
The kinematic internal-wave stress is
Tw = —Tcuq Uoily (6.98)
and acts in addition to the normal RBL turbulent and form drag stress.
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The attenuation factor decreases rapidly with increasing mixed-layer
depth, so that for H much greater than about 10 m the drag is small. In the
central Arctic, the mixed layer is rarely as shallow as 10 m, so internal-wave
drag is not often a factor in ice drift. But in the marginal ice zone, rapid
melting sometimes leads to extreme stratification and substantial increased
drag. This not only slows the ice but also reduces the RBL capacity for
turbulent mixing, which both reduces heat flux (bottom melting) and slows
mixed-layer deepening.

In McPhee and Kantha (1989), we applied the parametrization in an
ice/RBL numerical model, with drag calculated by integrating a plausible
spectrum of under-ice roughness over two-dimensional wave number space.
We found that a spectrum with a peak wave number of 0.06 m~! (100 m
wavelength) and root-mean-square amplitude of 2.0 m produced about the
observed amount of increased drag and decreased heat flux. The model also
predicted significantly less mixed-layer deepening than a similar model
without internal-wave drag, again in agreement with observations. We ob-
tained similar results when we replaced the under-ice waviness spectrum
with a single wave number disturbance with the same wavelength and am-
plitude reduced to 1.4 m. The latter reduces computation significantly.

VIII. Summary

In order to understand (and model) ice motion and thermodynamics,
mixed-layer evolution, how physics affects biological processes, and air-
ice—sea interaction in general, it is necessary to describe properly what
controls fluxes of momentum, heat, salt, and other quantities near the ice/
ocean boundary. My experience has been that the problem is usually ap-
proached in one of two ways: (1) express the fluxes in terms of bulk exchange
coeflicients and search for ways of simplifying the physics to specification of
a few empirical “constants,” or (2) use a computer to solve a numerical
model of the conservation equations at multiple levels, in essence relegating
the empiricism to smaller and smaller scales, where our knowledge is greatly
enhanced by laboratory studies. In some sense, this chapter documents an
attempt to strike a middle course, in which we ask: what is the simplest
conceptual view of the exchange process that can still account for the impor-
tant features of the observational base and the results of sophisticated nu-
merical models?

Perhaps the most common question associated with small-scale processes
is how much drag the ocean exerts on drifting ice. Studies during the past
couple of decades have shown that this is by no means a simple question, nor
is it one that we can consider answered. A number of important factors affect
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the drag, among which are under-ice roughness, both small and large scale;
buoyancy flux at the ice/ocean interface and at the base of the mixed layer;
and pressure-displacement correlations in internal waves generated by
ridge keels. Similar considerations apply to heat and salt flux between ice and
ocean, except that even with very rough ice it appears that much of the
gradient in these scalars occurs in a thin layer near the interface where
molecular effects are important, often dominant.

Not all of these factors operate all the time. If the mixed layer is deep,
internal waves are unlikely to play much role in the ice force balance, and the
effect of buoyancy flux at the base of the mixed layer will be minimal. If the
mixed layer is near its freezing temperature and the ice is more than a few
centimeters thick, it is unlikely that surface buoyancy flux will be of overrid-
ing importance in RBL dynamics. Thus, for much of the ice pack in winter,
we can probably do an adequate job of describing momentum flux with an
expression like Eq. (6.51) and ice velocity relative to the ocean with a Rossby
similarity drag law [Eq. (6.68)] (although the question of what value to use
for z, remains). But the interesting dynamics, thermodynamics, and biology
are often associated with areas where many of the factors come into play
simultaneously: rapid melting or freezing, changes in upper-ocean stratifica-
tion, even large modification of under-ice roughness. To adequately model
air-sea—ice interaction in these situations most likely requires treating
small-scale exchange processes as realistically as possible.
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